Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(12): 1733-1744, 2017 03 23.
Article in English | MEDLINE | ID: mdl-27641332

ABSTRACT

Long-term survival remains low for most patients with glioblastoma (GBM), which reveals the need for markers of disease outcome and novel therapeutic targets. We describe that ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain development, plays a crucial role in the invasion of GBM cells. Differentiation of glioblastoma stem-like cells drives the nuclear translocation of an intracellular fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The intracellular fragment of ODZ1 promotes cytoskeletal remodelling of GBM cells and invasion of the surrounding environment both in vitro and in vivo. Absence of ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs drastically reduces the invasive capacity of GBM cells. This activity is mediated by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, that promotes the expression and activation of Ras homolog family member A (RhoA) and subsequent activation of Rho-associated, coiled-coil containing protein kinase (ROCK). Overexpression of ODZ1 in GBM cells reduced survival of xenografted mice. Consistently, analysis of 122 GBM tumour samples revealed that the number of ODZ1-positive cells inversely correlated with overall and progression-free survival. Our findings establish a novel marker of invading GBM cells and consequently a potential marker of disease progression and a therapeutic target in GBM.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Nerve Tissue Proteins/genetics , Proto-Oncogene Proteins c-myc/metabolism , Tenascin/genetics , Transcription, Genetic , rhoA GTP-Binding Protein/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Knockout Techniques , Glioblastoma/mortality , Glioblastoma/pathology , Heterografts , Humans , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Prognosis , Protein Transport , Proteolysis , Signal Transduction , Tenascin/deficiency , Tenascin/metabolism , Up-Regulation , rho-Associated Kinases/metabolism
2.
Clin Genet ; 67(2): 143-53, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15679824

ABSTRACT

Congenital malformations of the limbs are among the most frequent congenital anomalies found in humans, and they preferentially affect the distal part--the hand or foot. The presence of extra digits, a condition called polydactyly, is the most common limb deformity of the human hand and is the consequence of disturbances in the normal program of limb development. However, despite the extensive use of the developing limb as a classical developmental model, the cellular and genetic mechanisms that control the number and identity of the digits are not completely understood. The aim of this review is to introduce the reader to the current state of knowledge in limb development and to provide the necessary background for an understanding of how deviations from the normal developmental program may lead to polydactyly.


Subject(s)
Foot/embryology , Hand/embryology , Polydactyly/genetics , Polydactyly/physiopathology , Humans , Phenotype , Polydactyly/classification
3.
Mol Biol Rep ; 25(2): 87-94, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9540069

ABSTRACT

Complementary DNAs encoding nuclear-coded mitochondrial ATP synthase subunit alpha of Drosophila melanogaster and Strongylocentrotus purpuratus were obtained by a combination of library screening and redundant PCR. The entire coding sequence of the precursor polypeptide was inferred for both species. Southern blots to genomic DNA indicated that the gene is almost certainly single-copy in both organisms. Northern blots to RNA from staged developmental series showed that ATP synthase subunit alpha mRNA is represented in the egg, declines in abundance during cleavage, and is replenished by zygotic transcription in both species. However, the extent and timing of these changes differ significantly in the two species studied. Nuclear-coded and mitochondrially encoded ATP synthase genes appear to be temporally co-regulated in Drosophila, but not sea urchin development.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Mitochondria/enzymology , Proton-Translocating ATPases/genetics , Amino Acid Sequence , Animals , Blastocyst , Cell Nucleus , Cloning, Molecular , DNA, Complementary/genetics , Drosophila melanogaster , Gene Dosage , Genes/genetics , Genes, Insect/genetics , Larva , Molecular Sequence Data , RNA, Messenger/analysis , Sea Urchins , Sequence Analysis, DNA
4.
Vet Microbiol ; 33(1-4): 249-62, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1282756

ABSTRACT

The antigenic structure of the S glycoprotein of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) has been determined and correlated with the physical structure. Four antigenic sites have been defined (A, B, C, and D). The sites involved in the neutralization of TGEV are: A, D, and B, sites A and D being antigenically dominant for TGEV neutralization in vitro. These two sites have specific properties of interest: site A is highly conserved and is present in coronaviruses of three animal species, and site D can be represented by synthetic peptides. Both sites might be relevant in protection in vivo. PRCV does not have sites B and C, due to a genomic deletion. Complex antigenic sites, i.e., conformation and glycosylation dependent sites, have been represented by simple mimotopes selected from a library expressing recombinant peptides with random sequences, or by anti-idiotypic internal image monoclonal antibodies. An epidemiological tree relating the TGEVs and PRCVs has been proposed. The estimated mutation fixation rate of 7 +/- 2 x 10(-4) substitutions per nucleotide and year indicates that TGEV related coronaviruses show similar variability to other RNA viruses. In order to induce secretory immunity, different segments of the S gene have been expressed using a virulent forms of Salmonella typhimurium and adenovirus. These vectors, with a tropism for Peyer's patches may be ideal candidates in protection against TGEV.


Subject(s)
Antigens, Viral/immunology , Transmissible gastroenteritis virus/immunology , Viral Proteins/immunology , Amino Acid Sequence , Animals , Antigens, Viral/genetics , Binding Sites , Cloning, Molecular , Epitopes/analysis , Epitopes/genetics , Gene Expression Regulation, Viral , Genetic Vectors , Glycoproteins/genetics , Glycoproteins/immunology , Phylogeny , Plasmids , Sequence Homology, Amino Acid , Swine , Transmissible gastroenteritis virus/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...