Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Metallomics ; 11(11): 1864-1886, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31588944

ABSTRACT

Transgenic tobacco hairy roots expressing the bacterial arsenite efflux pump Acr3 from Ensifer medicae were generated. The gene product was targeted either to the plasma membrane (ACR3 lines) or to the tonoplast by fusing the ACR3 protein to the tonoplast integral protein TIP1.1 (TIP-ACR3 lines). Roots expressing Acr3 at the tonoplast showed greater biomass than those expressing Acr3 at the plasma membrane. Furthermore, higher contents of malondialdehyde (MDA) and RNA degradation in ACR3 lines were indicative of higher oxidative stress. The determination of ROS-scavenging enzymes depicted the transient role of peroxidases in ROS detoxification, followed by the action of superoxide dismutase during both short- and medium-term exposure periods. Regarding As accumulation, ACR3 lines accumulated up to 20-30% less As, whereas TIP-ACR3 achieved a 2-fold increase in As accumulation in comparison to control hairy roots. Strategies that presumably induce As uptake, such as phosphate deprivation or dehydration followed by rehydration in the presence of As, fostered As accumulation up to 10 800 µg g-1. Finally, the effects of the heterologous expression of acr3 on the root transcriptome were assessed. Expression at the plasma membrane induced drastic changes in gene expression, with outstanding overexpression of genes related to electron transport, ATP synthesis and ATPases, suggesting that As efflux is the main detoxification mechanism in these lines. In addition, genes encoding heat shock proteins and those related to proline synthesis and drought tolerance were activated. On the other hand, TIP-ACR3 lines showed a similar gene expression profile to that of control roots, with overexpression of the glutathione and phytochelatin synthesis pathways, together with secondary metabolism pathways as the most important resistance mechanisms in TIP-ACR3, for which As allocation into the vacuole allowed better growth and stress management. Our results suggest that modulation of As accumulation can be achieved by subcellular targeting of Acr3: expression at the tonoplast enhances As accumulation in roots, whereas expression at the plasma membrane could promote As efflux. Thus, both approaches open the possibilities for developing safer crops when grown on As-polluted paddy soils, but expression at the tonoplast leads to better growth and less stressed roots, since the high energy cost of As efflux likely compromises growth in ACR3 lines.


Subject(s)
Arsenic/metabolism , Cell Membrane/metabolism , Nicotiana/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Sinorhizobium/metabolism , Transcriptome/genetics , Vacuoles/metabolism , Arsenites/toxicity , Down-Regulation/genetics , Gene Expression Regulation, Plant , Logistic Models , Operon/genetics , Oxidative Stress , Phosphates/deficiency , Phylogeny , Plant Roots/growth & development , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Sinorhizobium/growth & development , Nicotiana/metabolism , Up-Regulation/genetics , Water
2.
Plant Physiol Biochem ; 138: 26-35, 2019 May.
Article in English | MEDLINE | ID: mdl-30831360

ABSTRACT

Inoculation practice with plant growth-promoting bacteria (PGPB) has been proposed as a good biotechnological tool to enhance plant performance and alleviate heavy metal/metalloid stress. Soybean is often cultivated in soil with high arsenic (As) content or irrigated with As-contaminated groundwater, which causes deleterious effects on its growth and yield, even when it was inoculated with rhizobium. Thus, the effect of double inoculation with known PGPB strains, Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 was evaluated in plants grown in pots under controlled conditions and treated with As. First, the viability of these co-cultivated bacteria was assayed using a flow cytometry analysis using SYTO9 and propidium iodide (PI) dyes. This was performed in vitro to evaluate the bacterial population dynamic under 25 µM AsV and AsIII treatment. A synergistic effect was observed when bacteria were co-cultured, since mortality diminished, compared to each growing alone. Indole acetic acid (IAA) produced by A. brasilense Az39 would be one of the main components involved in B. japonicum E109 mortality reduction, mainly under AsIII treatment. Regarding in vivo assays, under As stress, plant growth improvement, nodule number and N content increase were observed in double inoculated plants. Furthermore, double inoculation strategy reduced As translocation to aerial parts thus improving As phytostabilization potential of soybean plants. These results suggest that double inoculation with B. japonicum E109 and A. brasilense Az39 could be a safe and advantageous practice to improve growth and yield of soybean exposed to As, accompanied by an important metalloid phytostabilization.


Subject(s)
Arsenic/pharmacology , Azospirillum brasilense/metabolism , Bradyrhizobium/metabolism , Glycine max/growth & development , Glycine max/microbiology , Stress, Physiological/drug effects
3.
Plant Physiol Biochem ; 123: 8-17, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29220736

ABSTRACT

Soybean (Glycine max L.) is often cultivated in areas contaminated with arsenic (As), which negatively affects plant growth and reduces crop yield. The deleterious effects may be due, at least in part, to disturbances in the water status, as was reported for some plants exposed to heavy metals. However, to our knowledge, these mechanisms have not been studied in depth in soybean plants exposed to As. The aim of the present work was to analyze possible changes in water relations and the responses developed in soybean plants under arsenate (AsV) and arsenite (AsIII) stress. We discuss physiological and morphological aspects of the As stress response, such as root absorption rate, water content, stomatal conductance, water and osmotic potential, accumulation of compatible solutes, leaf conducting tissues and stomata characteristics. AsV and AsIII caused a significant decrease in root absorption rate, which could reduce metalloid uptake. On the other hand, water content decreased at the beginning of the treatment but was re-established after 4 and 8 d. This was correlated with a decrease in stomatal conductance and a reduction in leaf water and osmotic potential due to the accumulation of proline and soluble sugars. Besides, smaller leaf xylem vessels and abnormal stomata were observed in plants under As treatment. These mechanisms increased the plant's ability to retain water and therefore to avoid dehydration. Thus, the results of the present work contribute to the understanding of how soybean responds to As, by describing key tolerance strategies to the metalloid.


Subject(s)
Arsenic/pharmacology , Glycine max/metabolism , Plant Roots/metabolism , Stress, Physiological/drug effects , Water/metabolism
4.
Environ Technol ; 38(22): 2877-2888, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28076691

ABSTRACT

The aim of this work was to develop a biotechnological tool to hyperaccumulate high copper (Cu) concentrations from wastewaters. Transgenic tobacco hairy roots were obtained by expressing, either the wild-type version of the gene copC from Pseudomonas fluorescens in the cytoplasm of plant cells (CuHR), or a modified version targeted to the vacuole (CuHR-V). Control hairy roots transformed with the empty vector (HR) were also generated. The roots were incubated in the presence of solutions containing Cu (from 1 to 50 mM). At 5 mM external copper, transgenic hairy roots accumulated twice the amount of copper accumulated by control hairy roots. However, at 50 mM Cu, accumulation in both transgenic and control roots reached similar values. Maximum Cu accumulation achieved by transgenic hairy roots was 45,000 µg g-1 at 50 mM external Cu. Despite the high Cu accumulation, transgenic hairy roots, particularly CuHR-V, showed less toxicity symptoms, in correlation with lower activity of several antioxidant enzymes and lower malondialdehyde (MDA) levels. Moreover, CuHR-V roots displayed low values of the oxidative stress index (OSI) - a global parameter proposed for oxidative stress - indicating that targeting CopC to the vacuole could alleviate the oxidative stress caused by Cu. Our results suggest that expressing copC in transgenic hairy roots is a suitable strategy to obtain Cu-hyperaccumulator hairy roots with less toxicity stress symptoms. ABBREVIATIONS: APX: ascorbate peroxidase; ATSDR: Agency for Toxic Substances and Disease Registry (U.S.); BCF: bioconcentration factor; CuHR: copper-hairy roots; EDTA: ethylenediamine tetracetic acid; EPA: Environmental Protection Agency (U.S.); GSH: glutathione; HM: heavy metals; HR: control hairy roots; ICP-OES: Inductively Coupled Plasma/Optical Emission Spectrometry; MDA: malondialdehyde; NBT: nitroblue tetrazolium; OD: optical density; OSI: oxidative stress index; PCR: polymerase chain reaction; PVP: polyvynilpirrolidone; PX: peroxidase; ROS: reactive oxygen species; SOD: superoxide dismutase.


Subject(s)
Bacterial Proteins/genetics , Copper/metabolism , Nicotiana/metabolism , Pseudomonas fluorescens/genetics , Waste Disposal, Fluid/methods , Bacterial Proteins/metabolism , Biodegradation, Environmental , Filtration , Oxidative Stress , Plant Roots/metabolism , Plant Roots/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Water Pollutants, Chemical/metabolism
5.
Environ Technol ; 38(17): 2164-2172, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27788623

ABSTRACT

The presence of chromium in soils not only affects the physiological processes of plants but also the microbial rhizosphere composition and metabolic activities of microorganisms. Hence, the inoculation of plants with Cr(VI)-tolerant rhizospheric microorganisms as an alternative to reduce Cr phytotoxicity was studied. In this work, chickpea germination was reduced by Cr(VI) concentrations of 150 and 250 mg/L (6 and 33%, respectively); however lower Cr(VI) concentrations negatively affected the biomass. On the other hand, its symbiont, Mesorhizobium ciceri, was able to grow and remove different Cr(VI) concentrations (5-20 mg/L). The inoculation of chickpea plants with this strain exposed to Cr(VI) showed a significantly enhanced plant growth. In addition, inoculated plants accumulated higher Cr concentration in roots than those noninoculated. It is important to note that Cr was not translocated to shoots independently of inoculation. These results suggest that Mesorhizobium's capability to remove Cr(VI) could be exploited for bioremediation. Moreover, chickpea plants would represent a natural system for phytoremediation or phytostabilization of Cr in situ that could be improved with M. ciceri inoculation. This strategy would be considered as a phytoremediation tool with great economic and ecological relevance.


Subject(s)
Biodegradation, Environmental , Chromium/chemistry , Cicer , Mesorhizobium , Germination , Plant Roots , Soil Pollutants
6.
Plant Physiol Biochem ; 103: 45-52, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26963899

ABSTRACT

Soybean (Glycine max) is often exposed to high arsenic (As) level in soils or through irrigation with groundwater. In previous studies on As-treated soybean seedlings we showed deleterious effect on growth, structural alterations mainly in root vascular system and induction of antioxidant enzymes. However, there are not reports concerning signal transduction pathways triggered by the metalloid in order to develop adaptive mechanisms. Phosphatidic acid (PA), a key messenger in plants, can be generated via phospholipase D (PLD) or via phospholipase C (PLC) coupled to diacylglycerol kinase (DGK). Thus, changes in PA and in an enzyme involved in its metabolism (PLD) were analysed in soybean seedlings treated with 25 µM AsV or AsIII. The present study demonstrated that As triggers the PA signal by PLD and also via PLC/DGK mainly after 48 h of As treatment. DGPP, other lipid messenger produced by phosphorylation of PA by PAK increased in As treated roots. Arsenic also induced rapid and significant stomatal closure after 1.5 h of treatment, mainly with AsIII, probably as an adaptive response to the metalloid to reduce water loss by transpiration. This report constitute the first evidence that shows the effects of As on lipid signalling events in soybean seedlings which would be crucial in adaptation and survival of soybean seedlings under As stress.


Subject(s)
Arsenic/pharmacology , Glycine max/drug effects , Phosphatidic Acids/metabolism , Plant Proteins/metabolism , Signal Transduction/drug effects , Adaptation, Physiological , Diacylglycerol Kinase/metabolism , Lipid Metabolism , Phospholipase D/metabolism , Phosphorylation , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/physiology , Plant Stomata/drug effects , Plant Stomata/enzymology , Plant Stomata/physiology , Seedlings/drug effects , Seedlings/enzymology , Seedlings/physiology , Glycine max/enzymology , Glycine max/physiology , Stress, Physiological , Type C Phospholipases/metabolism
7.
Environ Technol ; 37(18): 2379-90, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26853946

ABSTRACT

The use of native bacteria is a useful strategy to decontaminate industrial effluents as well as the environment. Acinetobacter sp. RTE1.4 was previously isolated from polluted environments and constitutes a promising alternative for this purpose due to its capability to remove phenol from synthetic solutions and industrial effluents. In this work, this strain was identified at species level as A. tandoii RTE1.4. Phenol degradation pathway was studied and some reaction intermediates were detected, confirming that this strain degraded phenol through ortho-cleavage of the aromatic ring. Phenol removal assays were carried out in a stirred tank bioreactor and a complete degradation of the contaminant was achieved after only 7 h, at an aeration rate of 3 vvm and at agitation of 600 rpm. Moreover, this bacterium was immobilized into calcium alginate beads and an increase in phenol biodegradation with respect to free cells was observed. The immobilized cells were reused for four consecutive cycles and stored at 4°C for 9 months, during which phenol removal efficiency was maintained. Post-removal solutions were evaluated by Microtox® test, showing a toxicity reduction after bacterial treatment. These findings demonstrated that A. tandoii RTE1.4 might be considered as a useful biotechnological tool for an efficient treatment of different solutions contaminated with phenol in bioreactors, using either free or immobilized cells.


Subject(s)
Acinetobacter/metabolism , Biodegradation, Environmental , Bioreactors/microbiology , Phenol/analysis , Water Pollutants, Chemical/analysis , Acinetobacter/cytology , Alginates , Biotechnology/methods , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Glucuronic Acid , Hexuronic Acids , Industrial Waste , Phenol/chemistry , Phenol/metabolism , Water Pollutants, Chemical/metabolism
8.
Plant Physiol Biochem ; 98: 119-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26686284

ABSTRACT

Even though vast areas contaminated with arsenic (As) are under soybean (Glycine max) cultivation, little is known about the growth and intrinsic antioxidant metabolism of soybean in response to As exposure. Thus, an evaluation was carried out of plant growth, root anatomy, antioxidant system and photosynthetic pigment content under arsenate (As(V)) and arsenite (As(III)) treatment. Soybean seedling growth was significantly affected at 25 µM or higher concentrations of As(V) or As(III), and the toxic effect on root growth was associated with cell death of root tips. Microscopic analysis of cross-sections of As-treated root showed a reduction in the cortex area, dark deposits in cortex cells and broken cells in the outer layer. Similarly, in the vascular cylinder, dark deposits within xylem vessel elements and phloem cell walls were observed. In all the analyzed parameters, the deleterious effect was more evident under As(III) than As(V) treatment. Arsenic-treated soybean seedlings showed increased activity of antioxidant enzymes [total peroxidases (Px) and superoxide dismutase (SOD)] in root and shoot harvested after 2 and 5 d of treatment. However, a reduction in chlorophyll content and an increase in membrane lipids peroxidation were observed. It is suggested that root structural alterations induced by As, such as the particular pattern of dark depositions in the vascular system, could be associated with an adaptation or detoxification mechanism to prevent As translocation to the aboveground tissues.


Subject(s)
Adaptation, Physiological , Arsenates/toxicity , Arsenic/toxicity , Arsenites/toxicity , Glycine max/drug effects , Antioxidants/metabolism , Arsenates/metabolism , Arsenic/metabolism , Arsenites/metabolism , Biomass , Oxidative Stress , Peroxidases/metabolism , Photosynthesis/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots/anatomy & histology , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/physiology , Seedlings/anatomy & histology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/physiology , Glycine max/anatomy & histology , Glycine max/growth & development , Glycine max/physiology , Stress, Physiological , Superoxide Dismutase/metabolism
9.
J Environ Sci (China) ; 33: 203-10, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26141894

ABSTRACT

Bacterial ability to colonize the rhizosphere of plants in arsenic (As) contaminated soils is highly important for symbiotic and free-living plant growth-promoting rhizobacteria (PGPR) used as inoculants, since they can contribute to enhance plant As tolerance and limit metalloid uptake by plants. The aim of this work was to study the effect of As on growth, exopolysaccharide (EPS) production, biofilm formation and motility of two strains used as soybean inoculants, Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39. The metabolism of arsenate (As(V)) and arsenite (As(III)) and their removal and/or possible accumulation were also evaluated. The behavior of both bacteria under As treatment was compared and discussed in relation to their potential for colonizing plant rhizosphere with high content of the metalloid. B. japonicum E109 growth was reduced with As(III) concentration from 10 µM while A. brasilense Az39 showed a reduction of growth with As(III) from 500 µM. EPS and biofilm production increased significantly under 25 µM As(III) for both strains. Moreover, this was more notorious for Azospirillum under 500 µM As(III), where motility was seriously affected. Both bacterial strains showed a similar ability to reduce As(V). However, Azospirillum was able to oxidize more As(III) (around 53%) than Bradyrhizobium (17%). In addition, both strains accumulated As in cell biomass. The behavior of Azospirillum under As treatments suggests that this strain would be able to colonize efficiently As contaminated soils. In this way, inoculation with A. brasilense Az39 would positively contribute to promoting growth of different plant species under As treatment.


Subject(s)
Arsenic/toxicity , Azospirillum brasilense/drug effects , Bradyrhizobium/drug effects , Soil Pollutants/toxicity , Arsenic/chemistry , Azospirillum brasilense/metabolism , Biofilms , Biomass , Bradyrhizobium/metabolism , Microbial Viability/drug effects , Movement , Soil Pollutants/chemistry
10.
Environ Sci Pollut Res Int ; 21(23): 13551-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25023657

ABSTRACT

A native bacterial strain with high capability for Cr (VI) removal was isolated from tannery sediments located in Elena (Córdoba Province, Argentina). The strain was characterized by amplification of 16S rRNA gene and identified as Serratia sp. C8. It was able to efficiently remove different Cr (VI) concentrations in a wide range of pHs and temperatures. The addition of different carbon sources as well as initial inoculum concentration were analyzed, demonstrating that Serratia sp. C8 could reduce 80 % of 20 mg/L Cr (VI) in a medium containing glucose 1 g/L, at pH 6-7 and 28 °C as optimal conditions, using 5 % inoculum concentration. The mechanisms involved in Cr (VI) removal were also evaluated. The strain was capable of biosorpting around 7.5-8.5 % of 20 mg/L Cr on its cell surface and to reduce Cr (VI). In addition, approximately a 54 and 46 % of total Cr was detected in the biomass and in the culture medium, respectively, and in the culture medium, Cr (III) was the predominant species. In conclusion, Serratia sp. C8 removed Cr (VI) and the mechanisms involved in decreasing order of contribution were as follows: reduction catalyzed by intracellular enzymes, accumulation into the cells, and biosorption to the microbial biomass. This strain could be a suitable microorganism for Cr (VI) bioremediation of tannery sediments and effluents or even for other environments contaminated with Cr.


Subject(s)
Chromium/metabolism , RNA, Ribosomal, 16S/genetics , Serratia/metabolism , Argentina , Biodegradation, Environmental , Biomass , Cell-Free System , Hydrogen-Ion Concentration , Oxidation-Reduction , Serratia/genetics , Temperature
11.
Environ Technol ; 35(13-16): 1802-10, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24956773

ABSTRACT

The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.


Subject(s)
Acinetobacter/metabolism , Phenols/metabolism , Rhodococcus/metabolism , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Industrial Waste , Tanning , Wastewater/analysis , Water Purification
12.
Environ Technol ; 34(1-4): 485-93, 2013.
Article in English | MEDLINE | ID: mdl-23530363

ABSTRACT

The use of native microorganisms is a useful strategy for phenol bioremediation. In the present work, a bacterial strain, named RTE1.4, was isolated from effluents of a chemical industry. The strain was able to grow at high concentrations of phenol and its derivatives, such as guaiacol, 2,4-dichlorophenol and pentachlorophenol, as well as in a medium containing industrial effluents. This bacterium was identified as Acinetobacter sp. using morphological, physiological, biochemical and 16S rRNA gene analysis. Acinetobacter sp. RTE1.4 degraded phenol (200 to 600 mg/L) at wide pH range and temperature (5-9 and 25-37 degrees C, respectively) demonstrating high adaptation ability to different conditions. The strain would metabolize phenol by the ortho-pathway since catechol 1,2-dioxygenase activity was detected. When bacteria were grown in medium containing phenol, an altered whole-cell protein pattern was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), with the lack of some low-molecular mass polypeptides and an increase in the relative abundance of high-molecular mass proteins after treatment. Considering that the use of native strains in bioremediation studies shows several ecological advantages and that the studied bacterium showed high tolerance and biodegradation capabilities, Acinetobacter sp. RTE1.4 could be an appropriate microorganism for improving bioremediation and biotreatment of areas polluted with phenol and/or some of its derivatives. Moreover, the establishment of the optimal growth conditions (pH, temperature, concentration of the pollutant) would provide baseline data for bulk production of the strain and its use in bioremediation processes.


Subject(s)
Acinetobacter/metabolism , Phenol/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Acinetobacter/isolation & purification , Environmental Restoration and Remediation , Hydrogen-Ion Concentration , Phylogeny , Temperature
13.
Appl Microbiol Biotechnol ; 97(3): 1017-30, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23287856

ABSTRACT

In recent years, hairy roots (HRs) have been successfully used as research tools for screening the potentialities of different plant species to tolerate, accumulate, and/or remove environmental pollutants, such as PCBs, TNT, pharmaceuticals, textile dyes, phenolics, heavy metals, and radionuclides. This is in part due to several advantages of this plant model system and the fact that roots have evolved specific mechanisms to deal with pollutants because they are the first organs to have contact with them. In addition, by using HRs some metabolic pathways and enzymatic catalyzed reactions involved in pollutants detoxification can be elucidated as well as the mechanisms of uptake, transformation, conjugation, and compartmentation of pollutants in vacuoles and/or cell walls, which are important detoxification sites in plants. Plant roots also stimulate the degradation of contaminants by the release of root exudates and oxido-reductive enzymes, such as peroxidases (Px) and laccases, that are associated with the removal of some organic pollutants. HRs are also considered good alternatives as enzyme sources for remediation purposes. Furthermore, application of genetic engineering methods and development of microbe-assisted phytoremediation are feasible strategies to enhance plant capabilities to tolerate, accumulate, and/or metabolize pollutants and, hence, to create or find an appropriate plant system for environmental cleanup. The present review highlights current knowledge, recent progress, areas which need to be explored, and future perspectives related to the application and improvement of the efficiency of HRs for phytoremediation research.


Subject(s)
Biodegradation, Environmental , Plant Roots/metabolism , Soil Pollutants/metabolism , Biotransformation , Plants/metabolism
14.
Environ Sci Pollut Res Int ; 20(3): 1310-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22961561

ABSTRACT

Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology.


Subject(s)
Agrobacterium/metabolism , Biodegradation, Environmental , Brassica napus/metabolism , Burkholderia/metabolism , Phenols/metabolism , Plant Roots/metabolism , Soil Pollutants/metabolism , Brassica napus/microbiology , Chlorophenols/metabolism , Guaiacol/metabolism , Pentachlorophenol/metabolism , Plant Roots/microbiology , Rhizosphere
15.
Plant Physiol Biochem ; 63: 8-14, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23228549

ABSTRACT

Soybean (Glycine max) is often being cultivated in soils with moderate to high arsenic (As) concentrations or under irrigation with As contaminated groundwater. The purpose of this study was to determine the effect of As on soybean germination, development and nodulation in soybean-Bradyrhizobium japonicum E109 symbiosis, as a first-step approach to evaluate the impact of As on soybean production. Semi-hydroponic assays were conducted using soybean seedlings inoculated and non-inoculated with B. japonicum E109 and treated with arsenate or arsenite. Soybean germination and development, at early stage of growth, were significantly reduced from 10 µM arsenate or arsenite. This also was seen for soybean seedlings inoculated with B. japonicum mainly with arsenite where, in addition, the number of effective nodules was reduced, despite that the microorganism tolerated the metalloid. This minor nodulation could be due to a reduced motility (swarming and swimming) of the microorganism in presence of As. Arsenic concentration in roots was about 250-times higher than in shoots. Transference coefficient values indicated that As translocation to aerial parts was low and As accumulated mainly in roots, without significant differences between inoculated and non-inoculated plants. The presence of As restricted soybean-B. japonicum symbiosis and hence, the efficiency of most used commercial inoculants for soybean. Thus, water and/or soils containing As would negatively impact on soybean production, even in plants inoculated with B. japonicum E109.


Subject(s)
Arsenic/toxicity , Bradyrhizobium/physiology , Glycine max/drug effects , Glycine max/microbiology , Metals, Heavy/toxicity , Plant Root Nodulation/drug effects , Glycine max/metabolism , Symbiosis/drug effects
16.
Recent Pat Biotechnol ; 6(2): 115-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22642821

ABSTRACT

In the last years, hairy root (HR) cultures are gaining attention in the biotechnology industry. This particular plant cell culture derives from explants infected with Agrobacterium rhizogenes. They constitute a relatively new approach to in vitro plant biotechnology and modern HR cultures are far away from the valuables findings performed by Philip R. White in the 1930's, who obtained indefinite growth of excised root tips. HR cultures are characterized by genetic and biochemical stability and high growth rate without expensive exogenous hormones source. HR cultures have allowed a deep study of plant metabolic pathways and the production of valuable secondary metabolites and enzymes, with therapeutic or industrial application. Furthermore, the potential of HR cultures is increasing continuously since different biotechnological strategies such as genetic engineering, elicitation and metabolic traps are currently being explored for discovery of new metabolites and pathways, as well as for increasing metabolites biosynthesis and/or secretion. Advances in design of proper bioreactors for HR growth are being of great interest, since scale up of metabolite production will allow the integration of this technology to industrial processes. Another application of HR cultures is related to their capabilities to biotransform and to degrade different xenobiotics. In this context, removal assays using this plant model system are useful tools for phytoremediation assays, previous to the application in the field. This review highlights the more recent application of HRs and those new patents which show their multiple utilities.


Subject(s)
Patents as Topic , Plant Roots , Plants, Genetically Modified , Agrobacterium , Bioreactors , Biosensing Techniques , Biotechnology , Biotransformation , Plant Cells
17.
Environ Sci Pollut Res Int ; 19(8): 3430-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22528990

ABSTRACT

INTRODUCTION: Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies. MATERIALS, METHODS AND RESULTS: In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000 mg/L. On the basis of morphological and biochemical properties, 16S rRNA gene sequencing, and phylogenetic analysis, the isolated strain was identified as Rhodococcus sp. Phenol removal was evaluated at a lab-scale in Erlenmeyer flasks and at a bioreactor scale in a stirred tank reactor. Rhodococcus sp. CS1 was able to completely remove phenol in a range of 200 to 1,000 mg/L in mineral medium at 30 ± 2 °C and pH 7 as optimal conditions. In the stirred tank bioreactor, we studied the effect of some parameters, such as agitation (200-600 rpm) and aeration (1-3 vvm), on growth and phenol removal efficiency. Faster phenol biodegradation was obtained in the bioreactor than in Erlenmeyer flasks, and maximum phenol removal was achieved at 400 rpm and 1 vvm in only 12 h. Furthermore, Rhodococcus sp. CS1 strain was able to grow and completely degrade phenols from tannery effluents after 9 h of incubation. CONCLUSION: Based on these results, Rhodococcus sp. CS1 could be an appropriate microorganism for bioremediation of tannery effluents or other phenol-containing wastewaters.


Subject(s)
Industrial Waste , Phenol/metabolism , Rhodococcus/metabolism , Waste Disposal, Fluid/methods , Bioreactors/microbiology , RNA, Ribosomal, 16S/genetics , Rhodococcus/genetics , Rhodococcus/isolation & purification , Water Purification/methods
18.
Environ Sci Pollut Res Int ; 19(6): 2202-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22234851

ABSTRACT

INTRODUCTION: Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions. MATERIAL AND METHODS: Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity. RESULTS: DT lines showed higher tolerance to 2,4-DCP at early stage of development since their germination index was higher than that of WT seedlings exposed to 25 mg/L of the pollutant. High 2,4-DCP removal efficiencies were found for WT tobacco plants. TPX1 transgenic plants and DT (line d) reached slightly higher removal efficiencies for 10 mg/L of 2,4-DCP than WT plants, while DT plants (line A) showed the highest removal efficiencies (98%). These plants showed an increase of 21% and 14% in 2,4-DCP removal efficiency for solutions containing 10 and 25 mg/L 2,4-DCP, respectively, compared with WT plants. In addition, an almost complete toxicity reduction of postremoval solutions using WT and DT plants was obtained through AMPHITOX test, which indicates that the 2,4-DCP degradation products would be similar for both plants. CONCLUSION: These results are relevant in the field of phytoremediation application and, moreover, they highlight the safety of using DT tobacco plants because nontoxic products were formed after an efficient 2,4-DCP removal.


Subject(s)
Chlorophenols/metabolism , Nicotiana/metabolism , Plants, Genetically Modified/metabolism , Biodegradation, Environmental , Blotting, Northern , Germination/drug effects , Peroxidase/genetics , Peroxidase/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/growth & development , Nicotiana/drug effects , Nicotiana/genetics , Nicotiana/growth & development
19.
Environ Sci Pollut Res Int ; 19(2): 482-91, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21822930

ABSTRACT

INTRODUCTION: Meristematic mitotic cells of Allium cepa constitute an adequate material for cytotoxicity and genotoxicity evaluation of environmental pollutants, such as phenol, which is a contaminant frequently found in several industrial effluents. RESULTS AND DISCUSSION: In the present work, Brassica napus hairy roots (HR) were used for phenol removal assays. The toxicity of post-removal solutions (PRS) and phenol solutions was analyzed. These HR removed the contaminant with high efficiency (100-80% for phenol solutions containing 10-250 mg/L, respectively). Phenol solutions treated with B. napus HR showed a significant reduction of general toxicity compared to untreated phenol solutions, since the IC50 values were 318.39 and 229.02 mg/L, respectively. Moreover, PRS presented lower cytotoxicity and genotoxicity than that found in phenol solutions untreated. The mitotic index (MI) observed in meristematic cells treated with PRS (100 and 250 mg/L of phenol) showed an increase of 35% and 42%, whereas the chromosome aberrations showed a significant decrease. According to these results, B. napus HR cultures could be used for the treatment of solutions contaminated with phenol, since we observed not only high removal efficiency, but also an important reduction of the general toxicity, cytotoxicity, and genotoxicity.


Subject(s)
Brassica napus/metabolism , Onions/drug effects , Phenol/isolation & purification , Phenol/pharmacokinetics , Biodegradation, Environmental , Brassica napus/drug effects , Chromosome Aberrations/chemically induced , Environmental Monitoring/methods , Inactivation, Metabolic , Meristem/cytology , Meristem/drug effects , Meristem/metabolism , Mitotic Index , Onions/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/pharmacokinetics
20.
J Hazard Mater ; 176(1-3): 784-91, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20022169

ABSTRACT

2,4-Dichlorophenol (2,4-DCP) is harmful for aquatic life and human health, so many attempts have focused on removing it through innocuous technologies. Hairy roots (HR) represent an interesting plant system to study the process and to remove efficiently this compound. In the present work, tobacco HR clones were obtained and one of them was selected for 2,4-DCP phytoremediation assays. These cultures removed 2,4-DCP in short time and with high efficiency (98%, 88% and 83%) for solutions initially containing 250, 500 and 1000 mg/L, respectively. Removal process was mainly associated with peroxidase activity. The highest efficiency for 2,4-DCP (500 mg/L) removal was reached at 60 min and using 10 mM H(2)O(2). Moreover, HR could be re-used, almost for three consecutive cycles. The diminution of pH and the increase of chloride ions in post-removal solutions suggested that 2,4-DCP dehalogenation was mediated by peroxidases. Moreover, changes in deposition pattern of lignin in HR exposed to 2,4-DCP suggested that cell walls of xylem and phloem elements would be the site of deposition of some products formed and they would be a lignin-type polymer. These findings contribute to understand 2,4-DCP removal process with tobacco HR and it might have implications in the use of this system for decontamination of polluted waters.


Subject(s)
Biodegradation, Environmental , Chlorophenols/metabolism , Plant Roots/metabolism , Kinetics , Lignin/metabolism , Peroxidase/metabolism , Plant Roots/growth & development , Solutions , Nicotiana , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...