Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Imaging Behav ; 14(1): 72-88, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30298238

ABSTRACT

Although research on goal-directed, proactive inhibitory control (IC) and stimulus-driven, reactive IC is growing, no previous study has compared proactive IC in conditions of uncertainty with regard to upcoming inhibition to conditions of certain upcoming IC. Therefore, we investigated effects of certainty and uncertainty on behavior and blood oxygen level dependent (BOLD) signal in proactive and reactive IC. In two studies, healthy adults performed saccadic go/no-go and prosaccade/antisaccade tasks. The certainty manipulation had a highly significant behavioral effect in both studies, with inhibitory control being more successful under certain than uncertain conditions on both tasks (p ≤ 0.001). Saccadic go responses were significantly less efficient under conditions of uncertainty than certain responding (p < 0.001). Event-related functional magnetic resonance imaging (fMRI) (one study) revealed a dissociation of certainty- and uncertainty-related proactive inhibitory neural correlates in the go/no-go task, with lateral and medial prefrontal and occipital cortex showing stronger deactivations during uncertainty than during certain upcoming inhibition, and lateral parietal cortex being activated more strongly during certain upcoming inhibition than uncertainty or certain upcoming responding. In the antisaccade task, proactive BOLD effects arose due to stronger deactivations in uncertain response conditions of both tasks and before certain prosaccades than antisaccades. Reactive inhibition-related BOLD increases occurred in inferior parietal cortex and supramarginal gyrus (SMG) in the go/no-go task only. Proactive IC may imply focusing attention on the external environment for encoding salient or alerting events as well as inhibitory mechanisms that reduce potentially distracting neural processes. SMG and inferior parietal cortex may play an important role in both proactive and reactive IC of saccades.


Subject(s)
Reaction Time/physiology , Reactive Inhibition , Saccades/physiology , Adolescent , Adult , Attention/physiology , Brain/physiology , Brain Mapping/methods , Cerebral Cortex/physiology , Female , Humans , Inhibition, Psychological , Magnetic Resonance Imaging/methods , Male , Parietal Lobe/physiology , Young Adult
2.
Acta Psychol (Amst) ; 187: 37-53, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29772392

ABSTRACT

Executive functions (EFs) comprise the updating, shifting and inhibition dimensions. According to the Unity and Diversity Model, the inhibition dimension is fully accounted for by a general EFs factor. This suggests that training of inhibition should transfer, in part, to updating and shifting. Therefore, we tested the effectiveness of a three-week inhibition training (high-conflict Stroop task) and explored near transfer effects to an untrained inhibition task (antisaccade task) and far transfer effects to untrained tasks demanding task-set shifting (number-letter-task), working memory updating (n-back task) and planning abilities (Stockings of Cambridge task). We employed a randomized pretest/treatment/posttest study design in n = 102 healthy young adults, assigned to an intensive Stroop training (n = 38), an active control condition (n = 34) or no training intervention (n = 30). In the Stroop training group, Stroop performance improved with practice, while performance in the active control group remained unchanged. The Stroop training group showed improvements in overall Stroop task performance from pretest to posttest, but we observed neither near nor far transfer effects. Additionally, specifically stronger gains on incongruent Stroop trials compared to congruent trials were observed in the Stroop training group when color bar trials were excluded from the pretest-posttest-analysis. Generally, there were substantial improvements from pretest to posttest independent of training condition in all transfer tasks. In sum, our data do not support the existence of transfer effects from inhibition training in healthy young adults.


Subject(s)
Inhibition, Psychological , Psychomotor Performance/physiology , Stroop Test , Transfer, Psychology/physiology , Adolescent , Adult , Executive Function/physiology , Female , Health Status , Humans , Intention , Male , Memory, Short-Term/physiology , Middle Aged , Random Allocation , Young Adult
3.
Brain Cogn ; 107: 37-47, 2016 08.
Article in English | MEDLINE | ID: mdl-27363008

ABSTRACT

The antisaccade task is a prominent tool to investigate the response inhibition component of cognitive control. Recent theoretical accounts explain performance in terms of parallel programming of exogenous and endogenous saccades, linked to the horse race metaphor. Previous studies have tested the hypothesis of competing saccade signals at the behavioral level by selectively slowing the programming of endogenous or exogenous processes e.g. by manipulating the probability of antisaccades in an experimental block. To gain a better understanding of inhibitory control processes in parallel saccade programming, we analyzed task-related eye movements and blood oxygenation level dependent (BOLD) responses obtained using functional magnetic resonance imaging (fMRI) at 3T from 16 healthy participants in a mixed antisaccade and prosaccade task. The frequency of antisaccade trials was manipulated across blocks of high (75%) and low (25%) antisaccade frequency. In blocks with high antisaccade frequency, antisaccade latencies were shorter and error rates lower whilst prosaccade latencies were longer and error rates were higher. At the level of BOLD, activations in the task-related saccade network (left inferior parietal lobe, right inferior parietal sulcus, left precentral gyrus reaching into left middle frontal gyrus and inferior frontal junction) and deactivations in components of the default mode network (bilateral temporal cortex, ventromedial prefrontal cortex) compensated increased cognitive control demands. These findings illustrate context dependent mechanisms underlying the coordination of competing decision signals in volitional gaze control.


Subject(s)
Cerebral Cortex/physiology , Executive Function/physiology , Eye Movements/physiology , Inhibition, Psychological , Magnetic Resonance Imaging , Psychomotor Performance/physiology , Adult , Animals , Eye Movement Measurements , Female , Humans , Male , Saccades/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...