Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Immunol ; 256: 109808, 2023 11.
Article in English | MEDLINE | ID: mdl-37852344

ABSTRACT

We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. In lymphocytes, the CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. These early stage observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19. BACKGROUND: Much of the literature on immune response post-SARS-CoV-2 infection has been in the acute and post-acute phases of infection. TRANSLATIONAL SIGNIFICANCE: We found differences at early time points of infection in approximately 160 participants. We compared multi-omic signatures in immune cells between individuals progressing to needing more significant medical intervention and non-progressors. We observed widespread evidence of a state of increased inflammation associated with progression, supported by a range of epigenomic, transcriptomic, and proteomic signatures. The signatures we identified support other findings at later time points and serve as the basis for prognostic biomarker development or to inform interventional strategies.


Subject(s)
COVID-19 , Humans , Multiomics , Proteomics , SARS-CoV-2 , Cytokines
2.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292797

ABSTRACT

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a rapid response by the scientific community to further understand and combat its associated pathologic etiology. A focal point has been on the immune responses mounted during the acute and post-acute phases of infection, but the immediate post-diagnosis phase remains relatively understudied. We sought to better understand the immediate post-diagnosis phase by collecting blood from study participants soon after a positive test and identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. Additionally, in the lymphocyte compartment, CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. Importantly, the identification of these cellular and molecular immune changes occurred at the early stages of COVID-19 disease. These observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19.

3.
Contemp Clin Trials Commun ; 14: 100318, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30656241

ABSTRACT

OBJECTIVES: The advent of large databases, wearable technology, and novel communications methods has the potential to expand the pool of candidate research participants and offer them the flexibility and convenience of participating in remote research. However, reports of their effectiveness are sparse. We assessed the use of various forms of outreach within a nationwide randomized clinical trial being conducted entirely by remote means. METHODS: Candidate participants at possibly higher risk for atrial fibrillation were identified by means of a large insurance claims database and invited to participate in the study by their insurance provider. Enrolled participants were randomly assigned to one of two groups testing a wearable sensor device for detection of the arrhythmia. RESULTS: Over 10 months, the various outreach methods used resulted in enrollment of 2659 participants meeting eligibility criteria. Starting with a baseline enrollment rate of 0.8% in response to an email invitation, the recruitment campaign was iteratively optimized to ultimately include website changes and the use of a five-step outreach process (three short, personalized emails and two direct mailers) that highlighted the appeal of new technology used in the study, resulting in an enrollment rate of 9.4%. Messaging that highlighted access to new technology outperformed both appeals to altruism and appeals that highlighted accessing personal health information. CONCLUSIONS: Targeted outreach, enrollment, and management of large remote clinical trials is feasible and can be improved with an iterative approach, although more work is needed to learn how to best recruit and retain potential research participants. TRIAL REGISTRATION: Clinicaltrials.govNCT02506244. Registered 23 July 2015.

4.
Am Heart J ; 175: 77-85, 2016 May.
Article in English | MEDLINE | ID: mdl-27179726

ABSTRACT

Efficient methods for screening populations for undiagnosed atrial fibrillation (AF) are needed to reduce its associated mortality, morbidity, and costs. The use of digital technologies, including wearable sensors and large health record data sets allowing for targeted outreach toward individuals at increased risk for AF, might allow for unprecedented opportunities for effective, economical screening. The trial's primary objective is to determine, in a real-world setting, whether using wearable sensors in a risk-targeted screening population can diagnose asymptomatic AF more effectively than routine care. Additional key objectives include (1) exploring 2 rhythm-monitoring strategies-electrocardiogram-based and exploratory pulse wave-based-for detection of new AF, and (2) comparing long-term clinical and resource outcomes among groups. In all, 2,100 Aetna members will be randomized 1:1 to either immediate or delayed monitoring, in which a wearable patch will capture a single-lead electrocardiogram during the first and last 2 weeks of a 4-month period beginning immediately or 4 months after enrollment, respectively. An observational, risk factor-matched control group (n = 4,000) will be developed from members who did not receive an invitation to participate. The primary end point is the incidence of new AF in the immediate- vs delayed-monitoring arms at the end of the 4-month monitoring period. Additional efficacy and safety end points will be captured at 1 and 3 years. The results of this digital medicine trial might benefit a substantial proportion of the population by helping identify and refine screening methods for undiagnosed AF.


Subject(s)
Asymptomatic Diseases/epidemiology , Atrial Fibrillation , Electrocardiography, Ambulatory/methods , Mass Screening , Stroke/prevention & control , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/physiopathology , Cost Savings , Female , Humans , Incidence , Male , Mass Screening/economics , Mass Screening/instrumentation , Mass Screening/methods , Middle Aged , Outcome and Process Assessment, Health Care , Risk Factors , Stroke/etiology , Telemedicine/methods , United States/epidemiology
5.
J Mol Diagn ; 8(3): 320-9, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16825504

ABSTRACT

Identifying the primary site in patients with metastatic carcinoma of unknown primary origin can enable more specific therapeutic regimens and may prolong survival. Twenty-three putative tissue-specific markers for lung, colon, pancreatic, breast, prostate, and ovarian carcinomas were nominated by querying a gene expression profile database and by performing a literature search. Ten of these marker candidates were then selected based on validation by reverse transcriptase-polymerase chain reaction (RT-PCR) on 205 formalin-fixed, paraffin-embedded metastatic carcinoma specimens originating from these six and from other cancer types. Next, we optimized the RNA isolation and quantitative RT-PCR methods for these 10 markers and applied the quantitative RT-PCR assay to a set of 260 metastatic tumors. We then built a gene-based algorithm that predicted the tissue of origin of metastatic carcinomas with an overall leave-one-out cross-validation accuracy of 78%. Lastly, our assay demonstrated an accuracy of 76% when tested on an independent set of 48 metastatic samples, 37 of which were either a known primary or initially presented as carcinoma of unknown primary but were subsequently resolved.


Subject(s)
Molecular Diagnostic Techniques/methods , Neoplasm Metastasis/genetics , Neoplasms, Unknown Primary/diagnosis , Neoplasms, Unknown Primary/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Algorithms , Biomarkers, Tumor/genetics , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Paraffin Embedding , Predictive Value of Tests , Protein Array Analysis
6.
Am J Pathol ; 165(5): 1799-807, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15509548

ABSTRACT

We recently developed a sensitive and flexible gene expression profiling system that is not dependent on an intact poly-A tail and showed that it could be used to analyze degraded RNA samples. We hypothesized that the DASL (cDNA-mediated annealing, selection, extension and ligation) assay might be suitable for the analysis of formalin-fixed, paraffin-embedded tissues, an important source of archival tissue material. We now show that, using the DASL assay system, highly reproducible tissue- and cancer-specific gene expression profiles can be obtained with as little as 50 ng of total RNA isolated from formalin-fixed tissues that had been stored from 1 to over 10 years. Further, tissue- and cancer-specific markers derived from previous genome-wide expression profiling studies of fresh-frozen samples were validated in the formalin-fixed samples. The DASL assay system should prove useful for high-throughput expression profiling of archived clinical samples.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation , Algorithms , Breast/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Cluster Analysis , Colon/pathology , Colonic Neoplasms/pathology , DNA Primers/chemistry , DNA, Complementary/metabolism , Formaldehyde/pharmacology , Humans , Oligonucleotide Array Sequence Analysis , RNA/metabolism , RNA, Transfer/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...