Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 42(3): 633-42, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17822735

ABSTRACT

A biosorbent was prepared by coating ceramic alumina with the natural biopolymer, chitosan, using a dip-coating process. Removal of arsenic (III) (As(III)) and arsenic (V) (As(V)) was studied through adsorption on the biosorbent at pH 4.0 under equilibrium and dynamic conditions. The equilibrium adsorption data were fitted to Langmuir, Freundlich, and Redlich-Peterson adsorption models, and the model parameters were evaluated. All three models represented the experimental data well. The monolayer adsorption capacity of the sorbent, as obtained from the Langmuir isotherm, is 56.50 and 96.46 mg/g of chitosan for As(III) and As(V), respectively. The difference in adsorption capacity for As(III) and As(V) was explained on the basis of speciation of arsenic at pH 4.0. Column adsorption results indicated that no arsenic was found in the effluent solution up to about 40 and 120 bed volumes of As(III) and As(V), respectively. Sodium hydroxide solution (0.1M) was found to be capable of regenerating the column bed.


Subject(s)
Aluminum Oxide/chemistry , Arsenic/chemistry , Chitosan/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption
2.
Environ Sci Pollut Res Int ; 14(6): 388-96, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17993222

ABSTRACT

BACKGROUND: Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. METHODS: Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L(-1) suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. RESULTS: Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. DISCUSSION: Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. CONCLUSIONS: In general, As(V) and organic As were the dominant species in solution, which is surprising under anaerobic conditions in terrestrial environments. The unexpected occurrence of organic species of As was attributed to enrollment of ternary organic complexes or living organisms such as algae or cyanobacteria. PERSPECTIVES: These findings are believed to be useful for remediation strategies in mine-affected regions, as the organic As species are in general considered to be less toxic than inorganic ones and even As(V) is considered less mobile and toxic than As(III).


Subject(s)
Arsenic/analysis , Arsenic/chemistry , Gold , Mining , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/analysis , Anaerobiosis , Arsenates , Arsenites , Brazil
3.
Environ Int ; 32(6): 766-74, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16650471

ABSTRACT

This case study was conducted to evaluate the use of reclaimed lake sediment as a growth media for vegetable production and to estimate whether accumulation of micronutrients and heavy metals in the vegetables would impact human nutrition or health, respectively. Five plant species, bean (Phaseolus vulgaris L.), broccoli (Brassica oleracea L.), carrot (Daucus carota L.), pepper (Capsicum annum L.), and tomato (Lycopersicon esculentum L.), were grown in pots containing either reclaimed sediment from the Illinois River or a reference soil. Edible and vegetative tissues from the plants were analyzed for 19 elements, including As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Tomato and pepper grown in sediment showed significantly greater biomass and yield as compared to plants from the reference soil. Elemental analysis of the tissues revealed that Zn and Mo were the only elements that were significantly greater in sediment-grown plants on a consistent basis. While significant, Zn concentrations were no more than 3-fold higher than those in plants from the reference soil. The same trend was observed for Mo, except for bean tissues, which showed a 10-fold greater concentration in sediment-grown plants. The projected dietary intake of Cu, Mo, and Zn from consumption of sediment-grown vegetable tissues was significantly higher than for soil-grown plants, although the contribution to the recommended dietary allowances (RDAs) for these elements was substantial only for Mo. Intake of sediment-grown beans would have provided 500% of the dietary Mo RDA. While this is below the lowest observable adverse effect level (LOAEL) value for this element, there is no evidence to indicate that there would be a nutritional or therapeutic benefit from the consumption of bean containing this level of Mo. The dietary exposures to Cd and Pb would have been below the pertinent limits for all age and gender groups with the exception of the cumulative dietary Cd exposure to the 1-3 year age group. The results from this study suggest that this reclaimed sediment can be utilized for the production of vegetables intended for human consumption. The results from this case study also suggest that sediment material with similar physicochemical characteristics and elemental concentrations that fall within the pertinent regulatory guidelines should also be a suitable and safe medium for vegetable production.


Subject(s)
Environmental Exposure/analysis , Food Contamination/analysis , Geologic Sediments/analysis , Metals, Heavy/analysis , Vegetables/chemistry , Brassica , Capsicum , Conservation of Natural Resources , Daucus carota , Diet , Illinois , Solanum lycopersicum , Phaseolus , Plant Components, Aerial/chemistry , Plant Roots/chemistry , Rivers , Soil Pollutants/analysis , Waste Management/methods
4.
Dent Mater ; 22(2): 119-24, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16002132

ABSTRACT

OBJECTIVE: This study was undertaken to determine whether iodine used to control bacteria in dental unit waterlines could increase mercury concentrations in dental wastewater. METHODS: The study was conducted in four parts. Part 1. Solutions containing iodine in concentrations ranging from zero (control) to 20 mg/L were mixed with ground and sieved dental amalgam and then allowed to equilibrate by settling. Cold vapor atomic absorption spectrometry was used to determine mercury levels in the settled supernatants at 24 h and at 7 days. Part 2. Deionized water was pumped through an iodine-releasing water-treatment cartridge, collected, and mixed with ground and sieved dental amalgam. Mercury levels in settled supernatants were measured at 24 h and at 7 days. Part 3. Iodine in water from two commercial iodine-releasing cartridges was measured using Inductively Couple Plasma Mass Spectrometry. Part 4. Baseline mercury levels in settled supernatants from wastewater collected from two dental chairs were compared to samples taken from chairs equipped with iodine-releasing cartridges. RESULTS: Part 1. A linear correlation between iodine and mercury concentration (r2=0.9167 and 0.9459, respectively, both P<0.001) was seen at both 24 h and 7 days. Part 2. Mean mercury levels in 24h samples were 3.0 times higher than the controls (0.2864 mg/L compared with 0.0939mg/L for the 24 h controls). Mean mercury levels in the 7-day samples were 5.9 times higher than the 7-day controls (0.2048 mg/L compared with 0.0348 mg/L for the 7-day controls). Part 3. The effluent from two iodine-releasing cartridges showed iodine concentrations averaging 3.2 mg/L (n=10, SD=0.8, range=2.5-4.6). Part 4. Data from the clinical study showed a statistically significant 2.5-fold increase in mercury levels with iodine-containing samples compared to baseline (0.0853 mg/L, n=18, SD=0.0441 and 0.0345 mg/L, n=18, SD=0.0145, respectively; P<0.001). SIGNIFICANCE: Data suggest that iodine can increase concentrations of dissolved mercury in dental unit wastewater.


Subject(s)
Dental Disinfectants/chemistry , Dental Equipment , Dental Waste/analysis , Iodine/chemistry , Mercury/analysis , Water/chemistry , Dental Amalgam/chemistry , Humans , Mass Spectrometry , Materials Testing , Mercury/chemistry , Solubility , Spectrophotometry, Atomic , Time Factors , Waste Disposal, Fluid , Water Microbiology
5.
Environ Sci Technol ; 37(18): 4261-8, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-14524462

ABSTRACT

We report here the synthesis and characterization of two new classes of chelating fibers, namely, (1) polymercaptopropylsilsesquioxane (PMPS) and (2) copper(II) ferrocyanide complexed with poly[1-(2-aminoethyl)-3-aminopropyl]silsesquioxane (Cu-FC-PAEAPS) fibers. These fibers were evaluated for selective removal of trace amount of mercury and cesium ions respectively in the presence of competing metal ions from water. The PMPS and Cu-FC-PAEAPS fibers were prepared by coating their corresponding soluble prepolymers, which are derived from mercaptopropyltrimethoxysilane and [1-(2-aminoethyl)-3-aminopropyl]trimethoxysilane monomers, respectively, on a glass fiber substrate, followed by a cross-linking step at 120 degrees C. The fibers were characterized through infrared spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). These novel materials are extremely efficient in removing low concentrations of mercury and cesium ions from water in the presence of high concentrations of sodium or potassium ions. They were shown to remove trace mercury and cesium contaminants effectively to well below parts per billion concentrations under a variety of conditions.


Subject(s)
Cesium/isolation & purification , Chelating Agents/chemistry , Mercury/isolation & purification , Water Pollutants, Radioactive/isolation & purification , Water Purification/methods , Cesium/chemistry , Mercury/chemistry , Microscopy, Electron, Scanning , Polymers , Spectrophotometry, Infrared
6.
Environ Sci Technol ; 37(19): 4449-56, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14572099

ABSTRACT

A new composite chitosan biosorbent was prepared by coating chitosan, a glucosamine biopolymer, onto ceramic alumina. The composite bioadsorbent was characterized by high-temperature pyrolysis, porosimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Batch isothermal equilibrium and continuous column adsorption experiments were conducted at 25 degrees C to evaluate the biosorbent for the removal of hexavalent chromium from synthetic as well as field samples obtained from chrome plating facilities. The effect of pH, sulfate, and chloride ion on adsorption was also investigated. The biosorbent loaded with Cr(VI) was regenerated using 0.1 M sodium hydroxide solution. A comparison of the results of the present investigation with those reported in the literature showed that chitosan coated on alumina exhibits greater adsorption capacity for chromium(VI). Further, experimental equilibrium data were fitted to Langmuir and Freundlich adsorption isotherms, and values of the parameters of the isotherms are reported. The ultimate capacity obtained from the Langmuir model is 153.85 mg/g chitosan.


Subject(s)
Carcinogens, Environmental/isolation & purification , Chelating Agents/chemistry , Chitin/analogs & derivatives , Chitin/chemistry , Chromium/isolation & purification , Models, Theoretical , Water Purification/methods , Adsorption , Aluminum Oxide/chemistry , Chitosan , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...