Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Lab Hematol ; 43(6): 1575-1584, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34237187

ABSTRACT

INTRODUCTION: The lack of quality control procedures for home point-of-care (POC) international normalized ratio (INR) devices is a concern. Concomitant laboratory and POC INR testing may be proposed to overcome the lack of quality control. However, a difference between the POC INR and the laboratory INR is not necessarily due to failure of the POC device. This study aimed to identify variables associated with a significant deviation between the POC INR and the laboratory INR. METHODS: Children included in this retrospective cohort study performed at least one concomitant laboratory and POC INRs. Clinical and laboratory variables were assessed for an association with significant deviation within pairs of INR. RESULTS: A significant deviation was noted for 30 (15.3%) of the 196 pairs of INR measurements from 124 children. Relative to patients without deviations, patients with deviations were younger (odds ratio =0.91; P = .020), less experienced in the use of POC INR devices (odds ratio =0.89; P = .098), and more likely to have received an INR result from a laboratory using animal thromboplastin (odds ratio =2.81 vs. 0.37 for laboratories using human thromboplastin; P = .016). In a multivariate analysis, younger age and the laboratory's use of animal thromboplastin were associated with significant deviations. CONCLUSIONS: Although most children had coherent pairs of INR values, the occurrence of deviations raises the question of the origin of the thromboplastin used in the laboratory and emphasizes the need to provide specific quality control procedures for POC INR devices.


Subject(s)
Blood Coagulation Tests/methods , Blood Coagulation Tests/standards , Blood Coagulation , International Normalized Ratio/standards , Point-of-Care Testing/standards , Self-Testing , Adolescent , Child , Child, Preschool , Humans , Infant , Infant, Newborn , International Normalized Ratio/methods , Quality Assurance, Health Care , Quality Control , Retrospective Studies
3.
Front Big Data ; 3: 577974, 2020.
Article in English | MEDLINE | ID: mdl-33693418

ABSTRACT

The use of artificial intelligence (AI) in a variety of research fields is speeding up multiple digital revolutions, from shifting paradigms in healthcare, precision medicine and wearable sensing, to public services and education offered to the masses around the world, to future cities made optimally efficient by autonomous driving. When a revolution happens, the consequences are not obvious straight away, and to date, there is no uniformly adapted framework to guide AI research to ensure a sustainable societal transition. To answer this need, here we analyze three key challenges to interdisciplinary AI research, and deliver three broad conclusions: 1) future development of AI should not only impact other scientific domains but should also take inspiration and benefit from other fields of science, 2) AI research must be accompanied by decision explainability, dataset bias transparency as well as development of evaluation methodologies and creation of regulatory agencies to ensure responsibility, and 3) AI education should receive more attention, efforts and innovation from the educational and scientific communities. Our analysis is of interest not only to AI practitioners but also to other researchers and the general public as it offers ways to guide the emerging collaborations and interactions toward the most fruitful outcomes.

4.
Transfus Med Hemother ; 46(2): 87-93, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31191194

ABSTRACT

Transfusion-transmitted infections remain a permanent threat in medicine. It keeps the burden of the past, marked by serious infections transmitted by transfusion, and is constantly threatened by emerging viruses. The global rise of immunosuppression among patients undergoing frequent transfusions exacerbates this problem. Over the past decade, criteria for donor selection have become increasingly more stringent. Although routine nucleic acid testing (NAT) for virus-specific detection has become more sensitive, these safety measures are only valuable for a limited number of select viruses. The scientific approach to this is however changing, with the goal of trying to identify infectious agents in donor units as early as possible to mitigate the risk of a clinically relevant infection. To this end, and in addition to an epidemiological surveillance of the general population, researchers are adopting new methods to discover emerging infectious agents, while simultaneously screening for an extended number of viruses in donors. Next-generation sequencing (NGS) offers the opportunity to explore the entire viral landscape in blood donors, the so-called metagenomics, to investigate severe transfusion reactions of unknown etiology. In the not too distant future, one could imagine this platform being used for routine testing of donated blood products.

5.
Transfusion ; 58(7): 1671-1681, 2018 07.
Article in English | MEDLINE | ID: mdl-29664127

ABSTRACT

BACKGROUND: Extracellular nucleic acids circulate in plasma. They are expected to be present in manufactured blood products eligible for transfusion, but little is known about their biological activity on human cells. The aim of this study is to investigate whether cell-free nucleic acids (CFNAs) are present and biologically active in red blood cell units (RBCUs), fresh frozen plasmas, and platelet concentrates. STUDY DESIGN AND METHODS: CFNAs were extracted from RBCUs, fresh frozen plasma, and platelet concentrates. Their nature and structure were analyzed by regular methods of nucleic acid detection/quantification. A normalized polymerase chain reaction combining amplification of a CFNA marker (Alu 115) and amplification of an internal nonhuman DNA control spiked in all samples (phiX 174) was developed to study CFNA release after RBCU storage. The impact of CFNAs on gene regulation was tested by microarray after coculture with peripheral blood mononuclear cells and macrophages. RESULTS: Extracellular double-stranded DNA was present in all blood products, with higher amounts found in cellular suspensions (RBCUs and platelet concentrates). Storage up to 40 days did not influence release from RBCUs, and CFNA amount varied considerably from one unit to another. Microarray experiments showed that exposition of macrophages to CFNA increased the expression of genes involved in the innate immune response including chemokines, chemokine receptors, and receptors of the innate response. CONCLUSION: CFNAs are present in blood products. Immunoregulatory properties of CFNA are shown in vitro, providing new insights on biologically active components of blood products besides those for intended therapeutic use.


Subject(s)
Blood Platelets/immunology , Blood Platelets/metabolism , Cell-Free Nucleic Acids/analysis , Erythrocytes/immunology , Erythrocytes/metabolism , Immunity, Innate/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...