Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 23(1): 332, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946110

ABSTRACT

BACKGROUND: The increasing growth of microbial resistance threatens the health of human societies. Therefore, the discovery and design of new antibiotics seem necessary. Today, antimicrobial peptides (AMPs) are receiving attention due to their unique properties. In our previous studies, exclusive antifungal effects of AurH1, which is a truncated and modified form of Aurein1.2, were synthesized. In this study, AurH1 antifungal peptide was synthesized into acylated (Ac-AurH1) and amidated (AurH1-NH2) derivatives, and their antifungal activity, cytotoxicity, anticancer activity, hemolytic effects were investigated. Finally, the time- of killing, the action mechanism of amidated and acylated peptides, and the effects of salts and human serum on their antimicrobial potency were determined. All the results obtained about these peptides were compared with the AurH1 without chemical modifications. RESULTS: The results showed that amidation at the C-terminal of AurH1 compared to acylation at the N-terminal of it can improve the antifungal properties and cytotoxicity of AurH1. The results showed that AurH1 amidation can maintain the antifungal activity of this peptide in the culture medium containing specific dilutions of human serum compared to the intact AurH1. Also, the amidation of the C-terminal of AurH1 could not affect the mechanism of action and its time -of killing. CONCLUSION: As a result, the amidation of the C-terminal of the AurH1 is a suitable strategy to improve its antifungal properties and cytotoxicity. This modification can enhance its properties for animal studies.


Subject(s)
Anti-Infective Agents , Antifungal Agents , Animals , Humans , Antifungal Agents/pharmacology , Peptides/pharmacology , Peptides/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
2.
Int J Biol Macromol ; 241: 124503, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37085080

ABSTRACT

The bioavailability, solubility, stability, and evaporation rate of essential oils can all be improved by using appropriate nanocarriers. This study describes the simple biosynthesize, physicochemical, optical, and biological activity of Chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite. The prepared nanocomposite was evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) mapping, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV-vis and photoluminescence (PL) techniques. The XRD investigation showed that crystallinity indexes of CS-FEO nanocomposite were lower than that of the pure CS and higher than nano-CS. According to SEM/TEM images, a spherical shape with a particle size distribution of around 50-250 nm for nanocomposite was obtained. PL measurement exhibited the addition of FEO caused a strong red emission. GC-MS analysis showed 40 various components in FEO. The antibacterial activity was studied using broth micro-dilution, disc diffusion, colony counts, and well agar diffusion methods against Gram-positive and Gram-negative bacteria. The results revealed that CS-FEO has stronger antibacterial activities than pure CS. It was also observed that the combined use of CS with FEO resulted in synergistic effects against studied bacteria. Obtained results imply that the CS-FEO may provide a new outlook in biomedical applications.


Subject(s)
Chitosan , Ferula , Nanocomposites , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Microbial Sensitivity Tests
3.
J Environ Manage ; 326(Pt A): 116729, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36375423

ABSTRACT

Among the various techniques used to clean up polluted environments, bioremediation is the most cost-effective and eco-friendly option. The diversity of microbial communities in a consortium can significantly affect the biodegradability of hazardous organic pollutants, particularly for in situ bioremediation processes. This is largely attributed to interactions between members of a consortium. In this study, the effect of internal diffusion limitations in substrate model biodegradation was firstly examined by immobilized bacterial cells at different particle sizes produced by the electrospray technique. According to the obtained results, for particles with large size, the effectiveness factors (η) were about 0.58-0.67, and the resistance to diffusive on the biodegradation rate was significant, while with decreasing the particle size, η increases and approaches about 1. After selection of suitable bead size, heavy crude oil biodegradation was investigated using a consortium consisting of three oil-degrading bacterial strains at different treatment systems. The removal rate in the suspended co-culture system stands at minimum value of 38% with all three strains which is an indicator of negative interactions among consortium members. Independent immobilization of microorganisms minimizes the competition and antagonistic interactions between strains and leads to more crude oil removal, so that, the biodegradation rate reached 60%.


Subject(s)
Petroleum Pollution , Petroleum , Petroleum/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Cells, Immobilized/metabolism
4.
Environ Monit Assess ; 193(6): 328, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33956244

ABSTRACT

Petroleum contamination of marine environments due to exploitation and accidental spills causes serious harm to ecosystems. Bioremediation with immobilized microorganisms is an environmentally friendly and cost-effective emerging technology for treating oil-polluted environments. In this study, Bacillus licheniformis was entrapped in Ca alginate beads using the electrospray technique for light crude oil biodegradation. Three important process variables, including inoculum size (5-15% v/v), initial oil concentration (1500-3500 ppm), and NaCl concentration (0-30 g/L), were optimized to obtain the best response of crude oil removal using response surface methodology (RSM) and Box-Behnken design (BBD). The highest crude oil removal of 79.58% was obtained for 1500 ppm of crude oil after 14 days using immobilized cells, and it was lower for freely suspended cells (64.77%). Our result showed similar trends in the effect of variables on the oil biodegradation rate in both free cell (FC) and immobilized cell (IC) systems. However, according to the analysis of variance (ANOVA) results, the extent of the variables' effectiveness was different in FC and IC systems. In the immobilized cell system, all variables had a greater effect on the rate of light crude oil degradation. Moreover, to evaluate the effectiveness of free and immobilized B. licheniformis in bioremediation of an actual polluted site, the crude oil spill in natural seawater was investigated. The results suggested the stability of beads in the seawater, as well as high degradation of petroleum hydrocarbons by free and immobilized cells in the presence of indigenous microorganisms.


Subject(s)
Bacillus licheniformis , Petroleum Pollution , Petroleum , Alginates , Biodegradation, Environmental , Ecosystem , Environmental Monitoring , Petroleum/analysis , Petroleum Pollution/analysis , Seawater
5.
Ecotoxicol Environ Saf ; 205: 111103, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32818878

ABSTRACT

Oil pollution is a serious international concern due to its harmful effect on human health and the environment. This study aims to investigate the effective factors on the biodegradation of Iranian heavy crude oil by Bacillus licheniformis. For this purpose, oil removal from the artificial seawater was studied by response surface methodology (RSM). After the screening experiments, pH (4-10), NaCl concentration (0-10 g/L), and oil concentration (500-4500 ppm) were selected as influential factors. Moreover, to evaluate the bacterial capability in bioremediation of an actual polluted site, crude oil spill with a salinity of 35 g/L was experimentally simulated. The proposed model in this study clearly shows that both selected individual factors and their interactions are significantly effective on the crude oil biodegradation capacity. The results showed that Bacillus licheniformis was able to degrade crude oil at different concentrations of oil, especially at low concentrations, which are challenging in actual polluted sites. 15%-66% removal was achieved for 500-4500 ppm of crude oil after 14 days. Furthermore, according to the obtained results, this bacterium can tolerate the salinity up to 3.5%. At this salinity level, crude oil removal was 23.43 and 25.64% in neutral and alkaline conditions, respectively. Process factors were optimized, and 54.8% of crude oil was removed at optimum conditions i.e., 3500 ppm crude oil concentration, 2.5 g/L of NaCl and pH equal to 8.5. Finally, it can be concluded that the selected bacterium of this study can be more effective in harsh environments such as hypersaline and alkaline conditions.


Subject(s)
Bacillus licheniformis/metabolism , Petroleum Pollution/analysis , Petroleum/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Iran , Models, Theoretical , Petroleum/metabolism , Salinity , Seawater/microbiology , Water Pollutants, Chemical/metabolism
6.
Int J Syst Evol Microbiol ; 70(5): 3413-3426, 2020 May.
Article in English | MEDLINE | ID: mdl-32375955

ABSTRACT

Five cyanobacterial strains with Nostoc-like morphology from different localities of the Mazandaran province of Iran were characterized using a polyphasic approach. Three strains clustered within the Aliinostoc clade whereas one each of the remaining two strains clustered within the genera Desmonostoc and Desikacharya. The phylogenetic positioning of all the strains by the bayesian inference, neighbour joining and maximum parsimony methods inferred using 16S rRNA gene indicated them to represent novel species of the genera Aliinostoc, Desmonostoc and Desikacharya. The 16S-23S ITS secondary structure analysis revealed that all five strains under study represented novel species unknown to science. In accordance with the International Code of Nomenclature for algae, fungi and plants we describe three novel species of the genus Aliinostoc and one species each of the genera Desmonostoc and Desikacharya.


Subject(s)
Cyanobacteria/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Bayes Theorem , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , Iran , Nucleic Acid Conformation , Oryza , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA
7.
Data Brief ; 28: 104933, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31886362

ABSTRACT

In order to develop a product sustainably, multiple analyses, including comprehensive environmental assessment, are required. Solar-assisted production of walnut husk methanolic extract (WHME) as a natural antioxidant for biodiesel was scrutinized by using the life cycle assessment (LCA) approach. More specifically, the environmental sustainability of WHME antioxidant was evaluated and compared to that of propyl gallate (PG), the most widely used synthetic biodiesel antioxidant, under two scenarios. Additionally, supplementary files including the inventory data consisting of raw data as well as elementary flows, mid-point, and end-point categories are presented. The analysis of scenarios revealed that the use of the natural antioxidant and the avoidance of the chemical antioxidant in biodiesel fuel could be regarded as an eco-friendly approach substantially enhancing the environmental friendliness of biodiesel in particular in terms of human health. Furthermore, given the waste-oriented nature of WHME, the scenario involved its application could serve as a promising strategy to simultaneously valorize the agro-waste and generate a value-added product; a move toward implementing the circular economy approach in the biodiesel industry.

8.
J Environ Manage ; 181: 817-831, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27397844

ABSTRACT

Algae have several industrial applications that can lower the cost of biofuel co-production. Among these co-production applications, environmental and wastewater bioremediation are increasingly important. Heavy metal pollution and its implications for public health and the environment have led to increased interest in developing environmental biotechnology approaches. We review the potential for algal biosorption and/or neutralization of the toxic effects of heavy metal ions, primarily focusing on their cellular structure, pretreatment, modification, as well as potential application of genetic engineering in biosorption performance. We evaluate pretreatment, immobilization, and factors affecting biosorption capacity, such as initial metal ion concentration, biomass concentration, initial pH, time, temperature, and interference of multi metal ions and introduce molecular tools to develop engineered algal strains with higher biosorption capacity and selectivity. We conclude that consideration of these parameters can lead to the development of low-cost micro and macroalgae cultivation with high bioremediation potential.


Subject(s)
Biotechnology/methods , Metals, Heavy/metabolism , Microalgae , Seaweed , Water Pollutants, Chemical/metabolism , Adsorption , Biodegradation, Environmental , Biomass , Cells, Immobilized/metabolism , Genetic Engineering , Hydrogen-Ion Concentration , Ions , Metals, Heavy/isolation & purification , Microalgae/growth & development , Microalgae/metabolism , Seaweed/growth & development , Seaweed/metabolism , Temperature , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification
9.
Biomed Res Int ; 2015: 597198, 2015.
Article in English | MEDLINE | ID: mdl-26146623

ABSTRACT

Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.


Subject(s)
Biofuels , Biotechnology , Lipid Metabolism/genetics , Microalgae/metabolism , Biomass , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , Lipids/chemistry , Microalgae/genetics , Signal Transduction/genetics
10.
Mol Biol Rep ; 40(7): 4421-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23652998

ABSTRACT

Developing a reliable technique to transform unicellular green algae, Chlorella vulgaris, could boost potentials of using microalgae feedstock in variety of applications such as biodiesel production. Volumetric lipid productivity (VLP) is a suitable variable for evaluating potential of algal species. In the present study, the highest VLP level was recorded for C. vulgaris (79.08 mg l(-1 )day(-1)) followed by 3 other strains studied; C. emersonii, C. protothecoides, and C. salina by 54.41, 45 and 18.22 mg l(-1)day(-1), respectively. Having considered the high productivity of C. vulgaris, it was selected for the preliminary transformation experiment through micro-particle bombardment. Plasmid pBI 121, bearing the reporter gene under the control of CaMV 35S promoter and the kanamycin marker gene, was used in cells bombardment. Primary selection was done on a medium supplemented by 50 mg l(-1) kanamycin. After several passages, the survived cells were PCR-tested to confirm the stability of transformation and then were found to exhibit ß-glucuronidase (GUS) activity in comparison with the control cells. Southern hybridization of npt II probe with genomic DNA revealed stable integration of the cassette in three different positions in the genome. The whole process was successfully implemented as a pre-step to transform the algal cells by genes involved in lipid production pathway which will be carried out in our future studies.


Subject(s)
Biofuels , Chlorella vulgaris/genetics , Chlorella vulgaris/metabolism , Biotransformation , Chlorella vulgaris/drug effects , Enzyme Activation , Gene Expression , Glucuronidase/genetics , Glucuronidase/metabolism , Kanamycin/pharmacology , Lipid Metabolism , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...