Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 8(7): 296, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29963356

ABSTRACT

Xanthan gum is an exo-polysaccharide industrially produced by fermentation using simple sugars. In this study, broomcorn stem was introduced as a low-cost- and widely available carbon source for xanthan gum fermentation. Broomcorn stem was hydrolyzed using sulphuric acid to liberate reducing sugar which was then used as a carbon source for biosynthesis of xanthan gum by Xanthomonas campesteris. Effects of hydrolysis time (15, 30, 45 and 60 min), sulphuric acid concentration (2, 4, 6 and 8% v/v) and solid loading (3, 4, 5 and 6% w/v) on the yield of reducing sugar and consequent xanthan production were investigated. Maximum reducing sugar yield (55.2%) and xanthan concentration (8.9 g/L) were obtained from hydrolysis of 4% (w/v) broomcorn stem with 6% (v/v) sulphuric acid for 45 min. The fermentation product was identified and confirmed as xanthan gum using Fourier transform infrared spectroscopy analysis. Thermogrvimetric analysis showed that thermal stability of synthesized xanthan gum was similar to those reported in previous studies. The molecular weight of the produced xanthan (2.23 × 106 g/mol) was determined from the intrinsic viscosity. The pyruvate and acetyl contents in xanthan gum were 4.21 and 5.04%, respectively. The chemical composition results indicated that this biopolymer contained glucose, mannose and glucoronic acid with molecular ratio of 1.8:1.5:1.0. The kinetics of batch fermentation was also investigated. The kinetic parameters of the model were determined by fermentation results and evaluated. The results of this study are noteworthy for the sustainable xanthan gum production from low-value agricultural waste.

2.
Nanomedicine ; 12(5): 1387-95, 2016 07.
Article in English | MEDLINE | ID: mdl-26956413

ABSTRACT

To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute.


Subject(s)
Bone Substitutes , Durapatite , Nanoparticles , Animals , Bone Regeneration , Ions
3.
Caspian J Intern Med ; 5(3): 156-61, 2014.
Article in English | MEDLINE | ID: mdl-25202443

ABSTRACT

BACKGROUND: Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. METHODS: Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). RESULTS: The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. CONCLUSION: The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

4.
J Microbiol ; 50(4): 575-80, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22923104

ABSTRACT

Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae, previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m(2), respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.


Subject(s)
Bioelectric Energy Sources , Electricity , Phenothiazines/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Biofilms/growth & development , Saccharomyces cerevisiae/physiology , Swine , Wastewater/microbiology
5.
Bioresour Technol ; 102(2): 1433-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20933399

ABSTRACT

The present study investigated the utilization of the whole rapeseed plant (seed and straw) for multi-biofuels production in a biorefinery concept. Results showed that bioethanol production from straw was technically feasible with ethanol yield of 0.15 g ethanol/g dry straw after combined alkaline peroxide and stream pretreatment. The byproducts (rapeseed cake, glycerol, hydrolysate and stillage) were evaluated for hydrogen and methane production. In batch experiments, the energy yields from each feedstock for, either methane production alone or for both hydrogen and methane, were similar. However, results from continuous experiments demonstrated that the two-stage hydrogen and methane fermentation process could work stably at organic loading rate up to 4.5 gVS/(Ld), while the single-stage methane production process failed. The energy recovery efficiency from rapeseed plant increased from 20% in the conventional biodiesel process to 60% in the biorefinery concept, by utilization of the whole rapeseed plant for biodiesel, bioethanol, biohydrogen and methane production.


Subject(s)
Biofuels/analysis , Biotechnology/methods , Brassica rapa/chemistry , Energy-Generating Resources , Ethanol/chemical synthesis , Hydrogen/analysis , Methane/analysis , Thermodynamics , Waste Disposal, Fluid
6.
Bioresour Technol ; 101(13): 4744-53, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20031394

ABSTRACT

Wheat straw is an abundant agricultural residue with low commercial value. An attractive alternative is utilization of wheat straw for bioethanol production. However, production costs based on the current technology are still too high, preventing commercialization of the process. In recent years, progress has been made in developing more effective pretreatment and hydrolysis processes leading to higher yield of sugars. The focus of this paper is to review the most recent advances in pretreatment, hydrolysis and fermentation of wheat straw. Based on the type of pretreatment method applied, a sugar yield of 74-99.6% of maximum theoretical was achieved after enzymatic hydrolysis of wheat straw. Various bacteria, yeasts and fungi have been investigated with the ethanol yield ranging from 65% to 99% of theoretical value. So far, the best results with respect to ethanol yield, final ethanol concentration and productivity were obtained with the native non-adapted Saccharomyses cerevisiae. Some recombinant bacteria and yeasts have shown promising results and are being considered for commercial scale-up. Wheat straw biorefinery could be the near-term solution for clean, efficient and economically-feasible production of bioethanol as well as high value-added products.


Subject(s)
Biotechnology/methods , Ethanol/chemistry , Hydrolysis , Triticum/metabolism , Bacteria/metabolism , Carbohydrates/chemistry , Enzymes/chemistry , Fermentation , Lignin/chemistry , Oxidants/chemistry , Oxygen/chemistry , Ozone , Saccharomyces cerevisiae/metabolism , Temperature , Yeasts/metabolism
7.
J Biotechnol ; 125(3): 377-84, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-16621080

ABSTRACT

Dilute-acid lignocellulosic hydrolyzate was successfully fermented to ethanol by encapsulated Saccharomyces cerevisiae at dilution rates up to 0.5h(-1). The hydrolyzate was so toxic that freely suspended yeast cells could ferment it continuously just up to dilution rate 0.1h(-1), where the cells lost 75% of their viability measured by colony forming unit (CFU). However, encapsulation increased their capacity for in situ detoxification of the hydrolyzate and protected the cells against the inhibitors present in the hydrolyzate. While the cells were encapsulated, they could successfully ferment the hydrolyzate at tested dilution rates 0.1-0.5h(-1), and keep more than 75% cell viability in the worst conditions. They produced ethanol with yield 0.44+/-0.01 g/g and specific productivity 0.14-0.17 g/(gh) at all dilution rates. Glycerol was the main by-product of the cultivations, which yielded 0.039-0.052 g/g. HMF present in the hydrolyzate was converted 48-71% by the encapsulated yeast, while furfural was totally converted at dilution rates 0.1 and 0.2h(-1) and partly at the higher rates. Continuous cultivation of encapsulated yeast was also investigated on glucose in synthetic medium up to dilution rate 1.0 h(-1). At this highest rate, ethanol and glycerol were also the major products with yields 0.43 and 0.076 g/g, respectively. The experiments lasted for 18-21 days, and no damage in the capsules was detected.


Subject(s)
Cellulose/metabolism , Ethanol/metabolism , Hydrolysis , Lignin/metabolism , Saccharomyces cerevisiae/metabolism , Acetic Acid/pharmacokinetics , Anaerobiosis , Cell Membrane/metabolism , Cellulose, Oxidized/metabolism , Culture Media/chemistry , Culture Techniques/methods , Fermentation , Furaldehyde/analogs & derivatives , Furaldehyde/pharmacokinetics , Glucose/pharmacokinetics , Inactivation, Metabolic , Industrial Microbiology , Mannose/pharmacokinetics
8.
Biotechnol Bioeng ; 90(3): 345-53, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15772948

ABSTRACT

The performance of encapsulated Saccharomyces cerevisiae CBS 8066 in anaerobic cultivation of glucose, in the presence and absence of furfural as well as in dilute-acid hydrolyzates, was investigated. The cultivation of encapsulated cells in 10 sequential batches in synthetic media resulted in linear increase of biomass up to 106 g/L of capsule volume, while the ethanol productivity remained constant at 5.15 (+/-0.17) g/L x h (for batches 6-10). The cells had average ethanol and glycerol yields of 0.464 and 0.056 g/g in these 10 batches. Addition of 5 g/L furfural decreased the ethanol productivity to a value of 1.31 (+/-0.10) g/L x h with the encapsulated cells, but it was stable in this range for five consecutive batches. On the other hand, the furfural decreased the ethanol yield to 0.41-0.42 g/g and increased the yield of acetic acid drastically up to 0.068 g/g. No significant lag phase was observed in any of these experiments. The encapsulated cells were also used to cultivate two different types of dilute-acid hydrolyzates. While the free cells were not able to ferment the hydrolyzates within at least 24 h, the encapsulated yeast successfully converted glucose and mannose in both of the hydrolyzates in less than 10 h with no significant lag phase. However, since the hydrolyzates were too toxic, the encapsulated cells lost their activity gradually in sequential batches.


Subject(s)
Acids/metabolism , Bioreactors/microbiology , Cell Culture Techniques/methods , Furaldehyde/pharmacology , Glucose/metabolism , Saccharomyces cerevisiae/metabolism , Wood , Cell Proliferation/drug effects , Hydrolysis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...