Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 333: 118442, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852640

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jinmaitong (JMT) is a prescription of Traditional Chinese Medicine that is composed of 12 crude drugs. It has been used in the treatment of diabetic neuropathic pain (DNP) for more than 30 years. AIM OF STUDY: Microglia are thought to play an important role in neuropathic pain. This study aimed to evaluate the protective effect of JMT against DNP and to investigate the underlying mechanisms in which the microglia and JAK2/STAT3 signaling pathway were mainly involved. MATERIALS AND METHODS: The chemical composition of JMT was analyzed using liquid chromatography tandem mass spectrometry. The diabetes model was constructed using 11 to 12-week-old male Zucker diabetic fatty (ZDF) rat (fa/fa). The model rats were divided into 5 groups and were given JMT at three dosages (11.6, 23.2, and 46.4 g/kg, respectively, calculated as the crude drug materials), JAK inhibitor AG490 (positive drug, 10 µg/day), and placebo (deionized water), respectively, for eight weeks (n = 6). Meanwhile, Zucker lean controls (fa/+) were given a placebo (n = 6). Body weight was tested weekly and blood glucose was monitored every 2 weeks. The mechanical allodynia and heat hyperalgesia were assessed using mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests. After treatment, the microglia activation marker Iba-1, CD11B, CD68, neuroinflammatory mediators, and mediators of the JAK2/STAT3 signaling pathway were compared between different groups. The mRNA and protein levels of target genes were assessed by quantitative real-time PCR and Western Blot, respectively. RESULTS: We found that JMT significantly inhibited the overactivation of microglia in spinal cords, and suppressed neuroinflammation of DNP model rats, thereby ameliorating neurological dysfunction and injuries. Furthermore, these effects of JMT could be attributed to the inhibition of the JAK2/STAT3 signaling pathway. CONCLUSIONS: Our findings suggested that JMT effectively ameliorated DNP by modulating microglia activation via inhibition of the JAK2/STAT3 signaling pathway. The present study provided a basis for further research on the therapeutic strategies of DNP.

2.
Pharmaceutics ; 16(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543229

ABSTRACT

Protein arginine deiminase 4 (PAD4) plays an important role in cancer progression by participating in gene regulation, protein modification, and neutrophil extracellular trap (NET) formation. Many reversible and irreversible PAD4 inhibitors have been reported recently. In this review, we summarize the structure-activity relationships of newly investigated PAD4 inhibitors to bring researchers up to speed by guiding and describing new scaffolds as optimization and development leads for new effective, safe, and selective cancer treatments. In addition, some recent reports have shown evidence that PAD4 inhibitors are expected to trigger antitumor immune responses, regulate immune cells and related immune factors, enhance the effects of immune checkpoint inhibitors, and enhance their antitumor efficacy. Therefore, PAD4 inhibitors may potentially change tumor immunotherapy and provide an excellent direction for the development and clinical application of immunotherapy strategies for related diseases.

3.
Biomed Pharmacother ; 168: 115826, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931514

ABSTRACT

Stimulus-responsive nanodrugs have been extensively studied and their structural changes in the cells are important for controlled intracellular drug release. Histone citrullination of peptidylarginine deiminase 4 (PAD4) regulates the expression of tumor suppressor genes. In our previous study, compounds such as YW3-56 (356) were developed as potent PAD4 inhibitors with excellent anti-tumor activity in vitro and in vivo. To enhance the antitumor activity and improve the bioavailability, we further optimized the structure by modifying the phenylboronic acid moiety to the PAD4 inhibitor (4B). Taking advantage of the oxidative stress responsiveness of the phenylboronic acid moiety, in this study, we covalently attached 4B to RGD sequence peptide modified chitosan (K-CRGDV) to construct this new oxidative stress responsive nanodrug (K-CRGDV-4B). The modification of RGD sequence peptide conferred the nanodrug the ability to actively target tumors. The release mechanism was verified by UV-Vis spectroscopy, NMR. The anti-tumor and anti-metastatic properties of K-CRGDV-4B were demonstrated by in vitro cytotoxicity assay and in vivo mouse Lewis lung cancer metastasis model. In addition, K-CRGDV-4B modulates the ratio of immune cells in LLC tumor-bearing mice. Immunosuppressive proteins such as PD1 were inhibited, while IFN-γ and IFN-ß, which are stimulators of tumor immune responses, were upregulated. Overall, K-CRGDV-4B is a stimulus-responsive nanodrug that responds to the tumor microenvironment by inhibiting PAD4 activity, blocking the formation of neutrophil extracellular traps (NETs), and improving the tumor immune microenvironment.


Subject(s)
Chitosan , Lung Neoplasms , Mice , Animals , Protein-Arginine Deiminase Type 4/metabolism , Nanomedicine , Oligopeptides/pharmacology , Oligopeptides/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Neutrophils/metabolism , Tumor Microenvironment
4.
J Am Chem Soc ; 145(34): 19086-19097, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37596995

ABSTRACT

Metal oxide nanozymes have emerged as the most efficient and promising candidates to mimic antioxidant enzymes for treatment of oxidative stress-mediated pathophysiological disorders, but the current effectiveness is unsatisfactory due to insufficient catalytic performance. Here, we report for the first time an intrinsic strain-mediated ultrathin ceria nanoantioxidant. Surface strain in ceria with variable thicknesses and coordinatively unsaturated Ce sites was investigated by theoretical calculation analysis and then was validated by preparing ∼1.2 nm ultrathin nanoplates with ∼3.0% tensile strain in plane/∼10.0% tensile strain out of plane. Compared with nanocubes, surface strain in ultrathin nanoplates could enhance the covalency of the Ce-O bond, leading to increasing superoxide dismutase (SOD)-mimetic activity by ∼2.6-fold (1533 U/mg, in close proximity to that of natural SOD) and total antioxidant activity by ∼2.5-fold. As a proof of concept, intrinsic strain-mediated ultrathin ceria nanoplates could boost antioxidation for improved ischemic stroke treatment in vivo, significantly better than edaravone, a commonly used clinical drug.


Subject(s)
Antioxidants , Ischemic Stroke , Humans , Antioxidants/pharmacology , Catalysis , Oxides , Superoxide Dismutase
5.
Molecules ; 29(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202657

ABSTRACT

Increased glycolysis is a key characteristic of malignant cells that contributes to their high proliferation rates and ability to develop drug resistance. The glycolysis rate-limiting enzyme hexokinase II (HK II) is overexpressed in most tumor cells and significantly affects tumor development. This paper examines the structure of HK II and the specific biological factors that influence its role in tumor development, as well as the potential of HK II inhibitors in antitumor therapy. Furthermore, we identify and discuss the inhibitors of HK II that have been reported in the literature.


Subject(s)
Hexokinase , Neoplasms , Humans , Neoplasms/drug therapy , Glycolysis
6.
Int J Nanomedicine ; 16: 5565-5580, 2021.
Article in English | MEDLINE | ID: mdl-34429600

ABSTRACT

PURPOSE: A targeted drug delivery system that combines protein-arginine deiminase type-4 (PAD4) inhibitors YW3-56 (356) with PTT of NPs is constructed to both decrease the accumulation of gold in metabolic organs and reduce the dose of chemotherapeutic agents. PATIENTS AND METHODS: In vitro cytotoxicity test and in vivo S180 tumor-bearing mice model were used to compare antitumor activity of 356-modified gold nanospheres and nanorods. The A549 tumor-bearing mice model was also exploited in antitumor assessment. In addition, ICP-MS, blood cell analyzer and blood biochemistry analyzer are applied for assessing the biosafety of NPs. RESULTS: Both 356-modified gold nanospheres and nanorods showed antitumor activity. However, 356-loaded gold nanorods are found to have better tumor inhibitory activity than 356-loaded gold nanospheres in the presence of laser and without laser irradiation. Thus, 356-loaded gold nanorods are selected to be applied for chemo-photothermal combined therapy on in vivo. We find that combination therapy could inhibit tumor growth and reduce lung tumor metastasis and inflammatory infiltration compared with individual therapy. It triggers apoptosis in tumor tissue observed by TUNEL assay and TEM pictures. CONCLUSION: Thus, an RGD targeting and PAD4 inhibitor-loaded system are established based on chemo-photothermal combined therapy. It could inhibit tumor growth, prevent lung metastasis and improve biosafety.


Subject(s)
Lung Neoplasms , Nanotubes , Animals , Containment of Biohazards , Gold , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Mice , Oligopeptides
7.
Int J Nanomedicine ; 15: 6659-6671, 2020.
Article in English | MEDLINE | ID: mdl-32982225

ABSTRACT

PURPOSE: Histone citrullination by peptidylarginine deiminases 4 (PAD4) regulates the gene expression of tumor suppressor. In our previously study, YW3-56 (356) was developed as a potent PAD4 inhibitor for cancer therapy with novel function in the autophagy pathway. To enhance the antitumor activity, the PAD4 inhibitor 356 was modified by the well-established cationic penetrating peptide RKKRRQRRR (peptide TAT) and gold nanoparticles to obtain 356-TAT-AuNPs which could enhance the permeability of chemical drug in solid tumor. METHODS: 356-TAT-AuNPs were prepared, and their morphology were characterized. The antitumor activity of 356-TAT-AuNPs was evaluated in vitro and in vivo. RESULTS: 356-TAT-AuNPs exhibited higher anticancer activity against HCT-116, MCF-7 and A549 cells than 356 and 356-AuNPs. Compared with 356 and 356-AuNPs, 356-TAT-AuNPs entered the cytoplasm and nuclear, exhibited stronger anticancer activity by increasing apoptosis, inducing autophagy and inhibiting of histone H3 citrullination, and in HCT-116 xenograft mouse model, 356-TAT-AuNPs could improve the antitumor activity. CONCLUSION: The modified AuNPs with peptide TAT as drug delivery system are potent in delaying tumor growth and could be a powerful vehicle for profitable anticancer drug development. We believe that peptide TAT modification strategy may provide a simple and valuable method for improving antitumor activity of PAD4 inhibitors for clinical use.


Subject(s)
2-Naphthylamine/analogs & derivatives , Antineoplastic Agents/pharmacology , Arginine/analogs & derivatives , Metal Nanoparticles/chemistry , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , 2-Naphthylamine/administration & dosage , 2-Naphthylamine/chemistry , 2-Naphthylamine/pharmacology , A549 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Arginine/administration & dosage , Arginine/chemistry , Arginine/pharmacology , Autophagy/drug effects , Drug Delivery Systems , Gold/chemistry , HCT116 Cells , Histones/metabolism , Humans , MCF-7 Cells , Male , Mice, Inbred BALB C , Peptide Fragments/chemistry , Xenograft Model Antitumor Assays , tat Gene Products, Human Immunodeficiency Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...