Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Phys Eng ; 14(2): 169-182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628888

ABSTRACT

Background: As the use of electronic devices such as mobile phones, tablets, and computers continues to rise globally, concerns have been raised about their potential impact on human health. Exposure to high energy visible (HEV) blue light, emitted from digital screens, particularly the so-called artificial light at night (ALAN), has been associated with adverse health effects, ranging from disruption of circadian rhythms to cancer. Breast cancer incidence rates are also increasing worldwide. Objective: This study aimed at finding a correlation between breast cancer and exposure to blue light from mobile phone. Material and Methods: In this retrospective matched case-control study, we aimed to investigate whether exposure to blue light from mobile phone screens is associated with an increased risk of female breast cancer. We interviewed 301 breast cancer patients (cases) and 294 controls using a standard questionnaire and performed multivariate analysis, chi-square, and Fisher's exact tests for data analysis. Results: Although heavy users in the case group of our study had a statistically significant higher mean 10-year cumulative exposure to digital screens compared to the control group (7089±14985 vs 4052±12515 hours, respectively, P=0.038), our study did not find a strong relationship between exposure to HEV and development of breast cancer. Conclusion: Our findings suggest that heavy exposure to HEV blue light emitted from mobile phone screens at night might constitute a risk factor for promoting the development of breast cancer, but further large-scale cohort studies are warranted.

2.
J Biomed Phys Eng ; 12(6): 637-644, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36569561

ABSTRACT

Background: Nowadays, there is a growing global concern over rapidly increasing screen time (smartphones, tablets, and computers). An accumulating body of evidence indicates that prolonged exposure to short-wavelength visible light (blue component) emitted from digital screens may cause cancer. The application of machine learning (ML) methods has significantly improved the accuracy of predictions in fields such as cancer susceptibility, recurrence, and survival. Objective: To develop an ML model for predicting the risk of breast cancer in women via several parameters related to exposure to ionizing and non-ionizing radiation. Material and Methods: In this analytical study, three ML models Random Forest (RF), Support Vector Machine (SVM), and Multi-Layer Perceptron Neural Network (MLPNN) were used to analyze data collected from 603 cases, including 309 breast cancer cases and 294 gender and age-matched controls. Standard face-to-face interviews were performed using a standard questionnaire for data collection. Results: The examined models RF, SVM, and MLPNN performed well for correctly classifying cases with breast cancer and the healthy ones (mean sensitivity> 97.2%, mean specificity >96.4%, and average accuracy >97.1%). Conclusion: Machine learning models can be used to effectively predict the risk of breast cancer via the history of exposure to ionizing and non-ionizing radiation (including blue light and screen time issues) parameters. The performance of the developed methods is encouraging; nevertheless, further investigation is required to confirm that machine learning techniques can diagnose breast cancer with relatively high accuracies automatically.

SELECTION OF CITATIONS
SEARCH DETAIL
...