Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 47: 109022, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36942100

ABSTRACT

The United States Environmental Protection Agency (US EPA) has developed a set of annual North American emissions data for multiple air pollutants across 18 broad source categories for 2002 through 2017. The sixteen new annual emissions inventories were developed using consistent input data and methods across all years. When a consistent method or tool was not available for a source category, emissions were estimated by scaling data from the EPA's 2017 National Emissions Inventory with scaling factors based on activity data and/or emissions control information. The emissions datasets are designed to support regional air quality modeling for a wide variety of human health and ecological applications. The data were developed to support simulations of the EPA's Community Multiscale Air Quality model but can also be used by other regional scale air quality models. The emissions data are one component of EPA's Air Quality Time Series Project which also includes air quality modeling inputs (meteorology, initial conditions, boundary conditions) and outputs (e.g., ozone, PM2.5 and constituent species, wet and dry deposition) for the Conterminous US at a 12 km horizontal grid spacing.

2.
Environ Sci Technol ; 56(11): 6905-6913, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34779612

ABSTRACT

Volatile chemical products (VCPs) are a significant source of reactive organic carbon emissions in the United States with a substantial fraction (>20% by mass) serving as secondary organic aerosol (SOA) precursors. Here, we incorporate a new nationwide VCP inventory into the Community Multiscale Air Quality (CMAQ) model with VCP-specific updates to better model air quality impacts. Model results indicate that VCPs mostly enhance anthropogenic SOA in densely populated areas with population-weighted annual average SOA increasing 15-30% in Southern California and New York City due to VCP emissions (contribution of 0.2-0.5 µg m-3). Annually, VCP emissions enhance total population-weighted PM2.5 by ∼5% in California, ∼3% in New York, New Jersey, and Connecticut, and 1-2% in most other states. While the maximum daily 8 h ozone enhancements from VCP emissions are more modest, their influence can cause a several ppb increase on select days in major cities. Printing Inks, Cleaning Products, and Paints and Coatings product use categories contribute ∼75% to the modeled VCP-derived SOA and Cleaning Products, Paints and Coatings, and Personal Care Products contribute ∼81% to the modeled VCP-derived ozone. Overall, VCPs enhance multiple criteria pollutants throughout the United States with the largest impacts in urban cores.


Subject(s)
Air Pollutants , Environmental Pollutants , Ozone , Volatile Organic Compounds , Aerosols , Air Pollutants/analysis , New York City , Ozone/analysis , United States
3.
Environ Sci Technol ; 55(2): 862-870, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33395278

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) have been released into the environment for decades, yet contributions of air emissions to total human exposure, from inhalation and drinking water contamination via deposition, are poorly constrained. The atmospheric transport and fate of a PFAS mixture from a fluoropolymer manufacturing facility in North Carolina were investigated with the Community Multiscale Air Quality (CMAQ) model applied at high resolution (1 km) and extending ∼150 km from the facility. Twenty-six explicit PFAS compounds, including GenX, were added to CMAQ using current best estimates of air emissions and relevant physicochemical properties. The new model, CMAQ-PFAS, predicts that 5% by mass of total emitted PFAS and 2.5% of total GenX are deposited within ∼150 km of the facility, with the remainder transported out. Modeled air concentrations of total GenX and total PFAS around the facility can reach 24.6 and 8500 ng m-3 but decrease to ∼0.1 and ∼10 ng m-3 at 35 km downwind, respectively. We find that compounds with acid functionality have higher deposition due to enhanced water solubility and pH-driven partitioning to aqueous media. To our knowledge, this is the first modeling study of the fate of a comprehensive, chemically resolved suite of PFAS air emissions from a major manufacturing source.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Fluorocarbons/analysis , Humans , Manufacturing and Industrial Facilities , North Carolina , Water Pollutants, Chemical/analysis
4.
Int J Environ Res Public Health ; 11(12): 12739-66, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25501000

ABSTRACT

This work describes a methodology for modeling the impact of traffic-generated air pollutants in an urban area. This methodology presented here utilizes road network geometry, traffic volume, temporal allocation factors, fleet mixes, and emission factors to provide critical modeling inputs. These inputs, assembled from a variety of sources, are combined with meteorological inputs to generate link-based emissions for use in dispersion modeling to estimate pollutant concentration levels due to traffic. A case study implementing this methodology for a large health study is presented, including a sensitivity analysis of the modeling results reinforcing the importance of model inputs and identify those having greater relative impact, such as fleet mix. In addition, an example use of local measurements of fleet activity to supplement model inputs is described, and its impacts to the model outputs are discussed. We conclude that with detailed model inputs supported by local traffic measurements and meteorology, it is possible to capture the spatial and temporal patterns needed to accurately estimate exposure from traffic-related pollutants.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure , Environmental Monitoring/methods , Models, Theoretical , Vehicle Emissions/analysis , Cities , Humans , Michigan
5.
Environ Health ; 10: 49, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21609456

ABSTRACT

BACKGROUND: Synoptic circulation patterns (large-scale tropospheric motion systems) affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses) on the association between ozone and hospital admissions for asthma and myocardial infarction (MI) among adults in North Carolina. METHODS: Daily surface meteorology data (including precipitation, wind speed, and dew point) for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS), which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions. RESULTS: Ozone was associated with asthma under dry tropical (1- to 5-day lags), transitional (3- and 4-day lags), and extreme moist tropical (0-day lag) air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag) air masses. CONCLUSIONS: Elevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain synoptic circulation patterns/air masses in conjunction with ambient ozone levels were associated with increased asthma and MI hospitalizations.


Subject(s)
Air Movements , Asthma/epidemiology , Myocardial Infarction/epidemiology , Ozone/adverse effects , Patient Admission/statistics & numerical data , Cities , Geographic Information Systems , Hospitalization/statistics & numerical data , Humans , North Carolina/epidemiology , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...