Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 151: 10-20, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32179468

ABSTRACT

Soldanella alpina differing in leaf epidermal UV-A absorbance (DEA375), as measured with the Dualex, was investigated as a model alpine plant for the flavonoid (Flav) composition and concentration and for anatomical and pigment characteristics. In sun leaves, twenty-three flavones were characterised by their mass formula, their maximum absorption, their glycosylation, their methylation and dehydroxylation pattern. The flavones belonged to four subfamilies (tetra-hydroxy-flavones, penta-hydroxy-flavones, penta-hydroxy-methyl-flavones and tri-hydroxy-di-methoxy-flavones), abundant in sun and shade leaves. Their concentration was estimated by their absorption at 350 nm after HPLC separation. Sun leaves contained relatively higher contents of penta-hydroxy-methyl-flavones and shade leaves higher contents of tetra-hydroxy-flavones. The flavones were present mainly in vacuoles, all over the leaf. After shade-sun transfer, the content of most flavones increased, irrespective of the presence or absence of UV radiation. Highly significant correlations with the log-transformed DEA375 suggest that DEA375 can be readily applied to predict the flavone content of S. alpina leaves. Shade-sun transfer of leaves decreased the hydroxycinnamic acid (HCA) content, the mass-based chlorophyll (Chl) a+b content and the Chl/Carotenoid (Car) ratio but increased DEA375, and the Car content. Together with previously reported anatomical characteristics all these parameters correlated significantly with the DEA375. The Flav content is therefore correlated to most of the structural characteristics of leaf acclimation to light and this can be probed in situ by DEA375.


Subject(s)
Acclimatization , Plant Leaves/physiology , Primulaceae/physiology , Ultraviolet Rays , Carotenoids/analysis , Chlorophyll/analysis , Flavonoids/analysis , Photosynthesis , Plant Leaves/radiation effects , Primulaceae/radiation effects , Sunlight
2.
Physiol Plant ; 168(3): 563-575, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31090072

ABSTRACT

In the French Alps, Soldanella alpina (S. alpina) grow under shade and sun conditions during the vegetation period. This species was investigated as a model for the dynamic acclimation of shade leaves to the sun under natural alpine conditions, in terms of photosynthesis and leaf anatomy. Photosynthetic activity in sun leaves was only slightly higher than in shade leaves. The leaf thickness, the stomatal density and the epidermal flavonoid content were markedly higher, and the chlorophyll/flavonoid ratio was significantly lower in sun than in shade leaves. Sun leaves also had a more oxidised plastoquinone pool, their PSII efficiency in light was higher and their non-photochemical quenching (NPQ) capacity was higher than that of shade leaves. Shade-sun transferred leaves increased their leaf thickness, stomatal density and epidermal flavonoid content, while their photosynthetic activity and chlorophyll/flavonoid ratio declined compared to shade leaves. Parameters indicating protection against high light and oxidative stress, such as NPQ and ascorbate peroxidase, increased in shade-sun transferred leaves and leaf mortality increased. We conclude that the dynamic acclimation of S. alpina leaves to high light under alpine conditions mainly concerns anatomical features and epidermal flavonoid acclimation, as well as an increase in antioxidative protection. However, this increase is not large enough to prevent damage under stress conditions and to replace damaged leaves.


Subject(s)
Acclimatization , Photosynthesis , Primulaceae/physiology , Sunlight , Chlorophyll , Oxidative Stress , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...