Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38713188

ABSTRACT

Invasive fungal pathogens pose a substantial threat to widely cultivated crop species, owing to their capacity to adapt to new hosts and new environmental conditions. Gaining insights into the demographic history of these pathogens and unravelling the mechanisms driving coevolutionary processes are crucial for developing durably effective disease management programmes. Pyrenophora teres is a significant fungal pathogen of barley, consisting of two lineages, Ptt and Ptm, with global distributions and demographic histories reflecting barley domestication and spread. However, the factors influencing the population structure of P. teres remain poorly understood, despite the varietal and environmental heterogeneity of barley agrosystems. Here, we report on the population genomic structure of P. teres in France and globally. We used genotyping-by-sequencing to show that Ptt and Ptm can coexist in the same area in France, with Ptt predominating. Furthermore, we showed that differences in the vernalization requirement of barley varieties were associated with population differentiation within Ptt in France and at a global scale, with one population cluster found on spring barley and another population cluster found on winter barley. Our results demonstrate how cultivation conditions, possibly associated with genetic differences between host populations, can be associated with the maintenance of divergent invasive pathogen populations coexisting over large geographic areas. This study not only advances our understanding of the coevolutionary dynamics of the Pt-barley pathosystem but also prompts further research on the relative contributions of adaptation to the host versus adaptation to abiotic conditions in shaping Ptt populations.


Subject(s)
Ascomycota , Hordeum , Plant Diseases , Hordeum/microbiology , Plant Diseases/microbiology , France , Ascomycota/genetics , Host-Pathogen Interactions/genetics , Phylogeny , Vernalization
2.
PLoS Genet ; 20(1): e1010884, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38285729

ABSTRACT

Fungal pathogens cause devastating disease in crops. Understanding the evolutionary origin of pathogens is essential to the prediction of future disease emergence and the potential of pathogens to disperse. The fungus Pyrenophora teres f. teres causes net form net blotch (NFNB), an economically significant disease of barley. In this study, we have used 104 P. teres f. teres genomes from four continents to explore the population structure and demographic history of the fungal pathogen. We showed that P. teres f. teres is structured into populations that tend to be geographically restricted to different regions. Using Multiple Sequentially Markovian Coalescent and machine learning approaches we demonstrated that the demographic history of the pathogen correlates with the history of barley, highlighting the importance of human migration and trade in spreading the pathogen. Exploring signatures of natural selection, we identified several population-specific selective sweeps that colocalized with genomic regions enriched in putative virulence genes, and loci previously identified as determinants of virulence specificities by quantitative trait locus analyses. This reflects rapid adaptation to local hosts and environmental conditions of P. teres f. teres as it spread with barley. Our research highlights how human activities can contribute to the spread of pathogens that significantly impact the productivity of field crops.


Subject(s)
Ascomycota , Hordeum , Humans , Hordeum/genetics , Hordeum/microbiology , Domestication , Ascomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics
3.
Curr Opin Microbiol ; 73: 102244, 2023 06.
Article in English | MEDLINE | ID: mdl-36889024

ABSTRACT

Identifying traits involved in plant-pathogen interactions is one of the major objectives in molecular plant pathology. Evolutionary analyses may assist in the identification of genes encoding traits that are involved in virulence and local adaptation, including adaptation to agricultural intervention strategies. In the past decades, the number of available genome sequences of fungal plant pathogens has rapidly increased, providing a rich source for the discovery of functionally important genes as well as inference of species histories. Positive selection in the form of diversifying or directional selection leaves particular signatures in genome alignments and can be identified with statistical genetics methods. This review summarises the concepts and approaches used in evolutionary genomics and lists major discoveries related to plant-pathogen adaptative evolution. We underline the significant contribution of evolutionary genomics in discovering virulence-related traits and the study of plant-pathogen ecology and adaptive evolution.


Subject(s)
Adaptation, Physiological , Genome, Fungal , Adaptation, Physiological/genetics , Virulence/genetics , Phenotype , Plant Diseases/microbiology
4.
Plants (Basel) ; 11(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36297757

ABSTRACT

Besides well-known grapevine trunk disease (GTD)-related pathogens, there is an increased interest in wood-colonizing fungi that infect grapevines. During 2017-2018, a survey was conducted in Cyprus and wood samples were collected from vines exhibiting typical GTD symptoms. Based on morphological and multilocus phylogenetic analyses (ITS, LSU, bt2, tef1-a), four species in the Sporocadaceae family were described and typified; two in the genus of Seimatosporium: Seim. cyprium sp. nov. and Seim. vitis-viniferae and two in Sporocadus: Spo. kurdistanicus and Spo. rosigena. The teleomorph of Seim. cyprium sp. nov. was also described. Pathogenicity trials with representative isolates of each species were performed on woody stems of two-year-old potted grapevines for 12 months under field conditions. All isolates were pathogenic, causing dark brown to black vascular discoloration, extending upward and downward from the inoculation point. Sporocadus isolates were significantly more aggressive than Seimatosporium with lesion lengths ranging from 9.24 to 6.90 and 4.13 to 4.00 cm, respectively. Successful re-isolations were also evident for all species and isolates. Seim. cyprium sp. nov. is a newly described species, while Spo. kurdistanicus and Spo. rosigena are reported for the first time in Europe on Vitis vinifera, suggesting the potential role of Sporocadaceae in the GTDs complex.

5.
Genome Biol Evol ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34499119

ABSTRACT

The rapid and widespread evolution of fungicide resistance remains a challenge for crop disease management. The demethylation inhibitor (DMI) class of fungicides is a widely used chemistry for managing disease, but there has been a gradual decline in efficacy in many crop pathosystems. Reliance on DMI fungicides has increased resistance in populations of the plant pathogenic fungus Cercospora beticola worldwide. To better understand the genetic and evolutionary basis for DMI resistance in C. beticola, a genome-wide association study (GWAS) and selective sweep analysis were conducted for the first time in this species. We performed whole-genome resequencing of 190 C. beticola isolates infecting sugar beet (Beta vulgaris ssp. vulgaris). All isolates were phenotyped for sensitivity to the DMI tetraconazole. Intragenic markers on chromosomes 1, 4, and 9 were significantly associated with DMI fungicide resistance, including a polyketide synthase gene and the gene encoding the DMI target CbCYP51. Haplotype analysis of CbCYP51 identified a synonymous mutation (E170) and nonsynonymous mutations (L144F, I387M, and Y464S) associated with DMI resistance. Genome-wide scans of selection showed that several of the GWAS mutations for fungicide resistance resided in regions that have recently undergone a selective sweep. Using radial plate growth on selected media as a fitness proxy, we did not find a trade-off associated with DMI fungicide resistance. Taken together, we show that population genomic data from a crop pathogen can allow the identification of mutations conferring fungicide resistance and inform about their origins in the pathogen population.


Subject(s)
Ascomycota , Fungicides, Industrial , Ascomycota/genetics , Cercospora , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , Genome-Wide Association Study
6.
Mol Plant Pathol ; 22(3): 301-316, 2021 03.
Article in English | MEDLINE | ID: mdl-33369055

ABSTRACT

Cercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp. However, because cercosporin production and subsequent cercosporin-initiated formation of reactive oxygen species is light-dependent, cell death evocation by this toxin is only fully ensured during a period of light. Here, we report the discovery of the effector protein CbNip1 secreted by C. beticola that causes enhanced necrosis in the absence of light and, therefore, may complement light-dependent necrosis formation by cercosporin. Infiltration of CbNip1 protein into sugar beet leaves revealed that darkness is essential for full CbNip1-triggered necrosis, as light exposure delayed CbNip1-triggered host cell death. Gene expression analysis during host infection shows that CbNip1 expression is correlated with symptom development in planta. Targeted gene replacement of CbNip1 leads to a significant reduction in virulence, indicating the importance of CbNip1 during colonization. Analysis of 89 C. beticola genomes revealed that CbNip1 resides in a region that recently underwent a selective sweep, suggesting selection pressure exists to maintain a beneficial variant of the gene. Taken together, CbNip1 is a crucial effector during the C. beticola-sugar beet disease process.


Subject(s)
Beta vulgaris/microbiology , Cercospora/genetics , Fungal Proteins/metabolism , Genome, Fungal/genetics , Perylene/analogs & derivatives , Plant Diseases/microbiology , Cercospora/growth & development , Cercospora/pathogenicity , Fungal Proteins/genetics , Host-Pathogen Interactions , Necrosis , Perylene/metabolism , Phenotype , Phylogeny , Plant Leaves/microbiology , Virulence , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...