Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(22): 26651-26661, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092159

ABSTRACT

We demonstrate surface enhanced infrared absorption spectroscopy using 1-dimensional highly doped semiconductors based on Si-doped InAsSb plasmonic nano-antennas. Engineering the plasmonic array to support the localized surface plasmon resonance aligned with the molecular vibrational absorption mode of interest involves finely setting the doping level and nano-antenna width. Heavily doped nano-antennas require a wider size compared to lightly doped resonators. Increasing the doping level, and consequently the width of the nano-antenna, enhances the vibrational absorption of a ~15 nm thick organic layer up to 2 orders of magnitude compared to the unstructured sample and therefore improves sensing. These results pave the way towards molecule fingerprint sensor manufacturing by tailoring the plasmonic resonators to get a maximum surface enhanced infrared absorption at the target vibrational mode.

2.
Nanotechnology ; 27(42): 425201, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27608135

ABSTRACT

We report a detailed analysis of the influence of the doping level and nanoribbon width on the localized surface plasmon resonance (LSPR) by means of reflectance measurements. The plasmonic system, based on one-dimensional periodic gratings of highly Si-doped InAsSb/GaSb semiconductor nanostructures, is fabricated by a simple, accurate and large-area technique fabrication. Increasing the doping level blueshifts the resonance peak while increasing the ribbon width results in a redshift, as confirmed by numerical simulations. This provides an efficient means of fine-tuning the LSPR properties to a target purpose of between 8-20 µm (1250-500 cm(-1)). Finally, we show surface plasmon resonance sensing to absorbing polymer layers. We address values of the quality factor, sensitivity and figure of merit of 16 700 nm RIU(-1) and 2.5, respectively. These results demonstrate Si-doped InAsSb/GaSb to be a low-loss/high sensitive material making it very promising for the development of biosensing devices in the mid-infrared.

3.
Opt Lett ; 41(16): 3900-3, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27519118

ABSTRACT

We theoretically demonstrate resonant modulation of terahertz (THz) waves with photo-designed metasurfaces. Our approach bypasses the short penetration length issue of the optical pump that prevents photo-generated thick metamaterials. We propose a three-layer semiconductor system of subwavelength thickness that presents 100% modulation of the reflection (or absorption) spectra at around 1 THz when optically actuated. This resonant modulation can be dynamically monitored at high frequency by the optical pump on a broad range of frequencies of Δν/ν=100%. Appropriate 2D photo-printed patterns make the system polarization insensitive and operational for a wide range of incident angles up to 65°.

SELECTION OF CITATIONS
SEARCH DETAIL
...