Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 101(10): 1039-48, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-17872467

ABSTRACT

Catecholaminergic polymorphic ventricular tachycardia (VT) is a lethal familial disease characterized by bidirectional VT, polymorphic VT, and ventricular fibrillation. Catecholaminergic polymorphic VT is caused by enhanced Ca2+ release through defective ryanodine receptor (RyR2) channels. We used epicardial and endocardial optical mapping, chemical subendocardial ablation with Lugol's solution, and patch clamping in a knockin (RyR2/RyR2(R4496C)) mouse model to investigate the arrhythmogenic mechanisms in catecholaminergic polymorphic VT. In isolated hearts, spontaneous ventricular arrhythmias occurred in 54% of 13 RyR2/RyR2(R4496C) and in 9% of 11 wild-type (P=0.03) littermates perfused with Ca2+and isoproterenol; 66% of 12 RyR2/RyR2(R4496C) and 20% of 10 wild-type hearts perfused with caffeine and epinephrine showed arrhythmias (P=0.04). Epicardial mapping showed that monomorphic VT, bidirectional VT, and polymorphic VT manifested as concentric epicardial breakthrough patterns, suggesting a focal origin in the His-Purkinje networks of either or both ventricles. Monomorphic VT was clearly unifocal, whereas bidirectional VT was bifocal. Polymorphic VT was initially multifocal but eventually became reentrant and degenerated into ventricular fibrillation. Endocardial mapping confirmed the Purkinje fiber origin of the focal arrhythmias. Chemical ablation of the right ventricular endocardial cavity with Lugol's solution induced complete right bundle branch block and converted the bidirectional VT into monomorphic VT in 4 anesthetized RyR2/RyR2(R4496C) mice. Under current clamp, single Purkinje cells from RyR2/RyR2(R4496C) mouse hearts generated delayed afterdepolarization-induced triggered activity at lower frequencies and level of adrenergic stimulation than wild-type. Overall, the data demonstrate that the His-Purkinje system is an important source of focal arrhythmias in catecholaminergic polymorphic VT.


Subject(s)
Bundle of His/physiology , Purkinje Fibers/physiology , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology , Action Potentials/physiology , Animals , Calcium/metabolism , Catecholamines/physiology , Death, Sudden, Cardiac , Disease Models, Animal , Endocardium/physiology , Female , Male , Mice , Mice, Mutant Strains , Patch-Clamp Techniques , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/etiology
2.
Circulation ; 113(5): 626-33, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16461834

ABSTRACT

BACKGROUND: High-frequency fractionated electrograms recorded during atrial fibrillation (AF) in the posterior left atrium (PLA) and elsewhere are being used as target sites for catheter ablation. We tested the hypothesis that highly periodic electric waves emerging from AF sources at or near the PLA give rise to the most fractionated activity in adjacent locations. METHODS AND RESULTS: Sustained AF was induced in 8 isolated sheep hearts (0.5 micromol/L acetylcholine). Endocardial videoimaging (DI-4-ANEPPS) and electric mapping of the PLA enabled spatial characterization of dominant frequencies (DFs) and a regularity index (ratio of DF to total power). Regularity index showed that fractionation was lowest within the area with the maximal DF (DFmax domain; 0.19+/-0.02) and highest within a band of &3 mm (0.16+/-0.02; P=0.047) at boundaries with lower-frequency domains. The numbers of spatiotemporal periodic episodes (25.9+/-2.3) and rotors per experiment (1.9+/-0.7) were also highest within the DFmax domain. Most commonly, breakthrough waves at the PLA traveled toward the rest of the atria (76.8+/-8.1% outward versus 23.2+/-8.1% inward; P<0.01). In both experiments and simulations with an atrial ionic model, fractionation at DFmax boundaries was associated with increased beat-to-beat variability of conduction velocity and directionality with wavebreak formation. CONCLUSIONS: During stable AF, the PLA harbors regular, fast, and highly organized activity; the outer limit of the DFmax domain is the area where the most propagation pattern variability and fractionated activity occur. These new concepts introduce a new perspective in the clinical use of high-frequency fractionated electrograms to localize sources of AF precisely at the PLA and elsewhere.


Subject(s)
Atrial Fibrillation/physiopathology , Electrocardiography/methods , Heart Atria/physiopathology , Animals , Body Surface Potential Mapping , Catheter Ablation , Fourier Analysis , Heart Conduction System/physiopathology , In Vitro Techniques , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...