Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37325819

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a result of a retroviral infection of SARS-CoV-2. Due to its virulence and high infection rate, it is a matter of serious concern and a global health emergency. Currently available COVID-19 vaccines approved by regulatory bodies around the world have been shown to provide significant protection against COVID-19. But no vaccine is 100% effective at preventing infection, also they have varying efficacy rates and different side effects. However, the main protease (Mpro) of SARS-CoV-2 has been identified as a key drug target due to its essential role in viral infection and its minimal similarity with human proteases. Cordyceps mushrooms have been found to have various therapeutic properties that could effectively combat SARS-CoV-2, including improve lung functioning, anti-viral, immunomodulators, anti-infectious, and anti-inflammatory. The present study aims to screen and evaluate the inhibitory potential of the bioactive molecules from the Cordyceps species against the Mpro of SARS-CoV-2. The bioactive molecules were screened based on their docking score, molecular interactions in the binding pocket, ADME properties, toxicity, carcinogenicity, and mutagenicity. Among all the molecules that were tested, cordycepic acid was the most effective and promising candidate, with a binding affinity of -8.10 kcal/mol against Mpro. The molecular dynamics (MD) simulation and free binding energy calculations revealed that the cordycepic acid-Mpro complex was highly stable and showed fewer conformational fluctuations. These findings need to be investigated further through in-vitro and in-vivo studies for additional validation.Communicated by Ramaswamy H. Sarma.

2.
Indian J Microbiol ; 58(3): 278-286, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30013271

ABSTRACT

All the genetic potential and the intelligence a bacteria can showcase in a given environment are embedded in its genome. In this study, we have presented systematic guidelines to understand a bacterial genome with the relevant set of in silico tools using a novel bacteria as an example. This study presents a multi-dimensional approach from genome annotation to tracing genes and their network of metabolism operating in an organism. It also shows how the sequence can be used to mine the enzymes and construction of its 3-dimensional structure so that its functional behavior can be predicted and compared. The discriminating algorithm allows analysis of the promoter region and provides the insight in the regulation of genes in spite of the similarity in its sequences. The ecological niche specific bacterial behavior and adapted altered physiology can be understood through the presence of secondary metabolite, antibiotic resistance genes, and viral genes; and it helps in the valorization of genetic information for developing new biological application/processes. This study provides an in silico work plan and necessary steps for genome analysis of novel bacteria without any rigorous wet lab experiments.

3.
Genome Announc ; 1(6)2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24371207

ABSTRACT

The whole genome of a pigment-producing isolate from a lake in northern India, Pseudogulbenkiania ferrooxidans strain EGD-HP2, has been sequenced to study the spectrum of biosynthesis of secondary metabolites. The genome annotation data revealed an operon for violacein, which showed homology with the reported operon of a Chromobacterium sp., and also a quinone cofactor.

SELECTION OF CITATIONS
SEARCH DETAIL
...