Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 7(10)2021 Mar.
Article in English | MEDLINE | ID: mdl-33674309

ABSTRACT

Nuisance flooding (NF) is defined as minor, nondestructive flooding that causes substantial, accumulating socioeconomic impacts to coastal communities. While sea-level rise is the main driver for the observed increase in NF events in the United States, we show here that secular changes in tides also contribute. An analysis of 40 tidal gauge records from U.S. coasts finds that, at 18 locations, NF increased due to tidal amplification, while decreases in tidal range suppressed NF at 11 locations. Estuaries show the largest changes in NF attributable to tide changes, and these can often be traced to anthropogenic alterations. Limited long-term measurements from estuaries suggest that the effects of evolving tides are more widespread than the locations considered here. The total number of NF days caused by tidal changes has increased at an exponential rate since 1950, adding ~27% to the total number of NF events observed in 2019 across locations with tidal amplification.

2.
Ann Rev Mar Sci ; 12: 121-151, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31479622

ABSTRACT

Tides are changing worldwide at rates not explained by astronomical forcing. Rather, the observed evolution of tides and other long waves, such as storm surges, is influenced by shelf processes and changes to the roughness, depth, width, and length of embayments, estuaries, and tidal rivers. In this review, we focus on processes in estuaries and tidal rivers, because that is where the largest changes to tidal properties are occurring. Recent literature shows that changes in tidal amplitude have been ubiquitous worldwide over the past century, often in response to wetland reclamation, channel dredging, and other environmental changes. While tidal amplitude changes are sometimes slight (<1%) or even negative, we identify two types of systems that are particularly prone to tidal amplification: (a) shallow, strongly damped systems, in which a small increase in depth produces a large decrease in effective friction, and (b) systems in which wave reflection and resonance are strongly influenced by changes to depth, friction, and convergence. The largest changes in amplitude occur inland, some distance from the coast, and can sometimes be measured in meters. Tide changes are a leading indicator that the dynamics of storm surges and river flood waves have also changed and are often associated with shifts in sediment transport, salinity intrusion, and ecosystem properties. Therefore, the dynamics of tidal evolution have major implications for coastal management, particularly for systems that are sensitive to changes in geometry induced by sea-level rise and anthropogenic development.


Subject(s)
Climate Change , Estuaries , Rivers , Tidal Waves , Ecosystem , Floods , Wetlands
3.
Sci Rep ; 7(1): 17021, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29208973

ABSTRACT

Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

SELECTION OF CITATIONS
SEARCH DETAIL