Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 717157, 2021.
Article in English | MEDLINE | ID: mdl-34475875

ABSTRACT

Background and Aims: The systemic host response in sepsis is frequently accompanied by central nervous system (CNS) dysfunction. Evidence suggests that excessive formation of neutrophil extracellular traps (NETs) can increase the permeability of the blood-brain barrier (BBB) and that the evolving mitochondrial damage may contribute to the pathogenesis of sepsis-associated encephalopathy. Kynurenic acid (KYNA), a metabolite of tryptophan catabolism, exerts pleiotropic cell-protective effects under pro-inflammatory conditions. Our aim was to investigate whether exogenous KYNA or its synthetic analogues SZR-72 and SZR-104 affect BBB permeability secondary to NET formation and influence cerebral mitochondrial disturbances in a clinically relevant rodent model of intraabdominal sepsis. Methods: Sprague-Dawley rats were subjected to fecal peritonitis (0.6 g kg-1 ip) or a sham operation. Septic animals were treated with saline or KYNA, SZR-72 or SZR-104 (160 µmol kg-1 each ip) 16h and 22h after induction. Invasive monitoring was performed on anesthetized animals to evaluate respiratory, cardiovascular, renal, hepatic and metabolic parameters to calculate rat organ failure assessment (ROFA) scores. NET components (citrullinated histone H3 (CitH3); myeloperoxidase (MPO)) and the NET inducer IL-1ß, as well as IL-6 and a brain injury marker (S100B) were detected from plasma samples. After 24h, leukocyte infiltration (tissue MPO) and mitochondrial complex I- and II-linked (CI-CII) oxidative phosphorylation (OXPHOS) were evaluated. In a separate series, Evans Blue extravasation and the edema index were used to assess BBB permeability in the same regions. Results: Sepsis was characterized by significantly elevated ROFA scores, while the increased BBB permeability and plasma S100B levels demonstrated brain damage. Plasma levels of CitH3, MPO and IL-1ß were elevated in sepsis but were ameliorated by KYNA and its synthetic analogues. The sepsis-induced deterioration in tissue CI-CII-linked OXPHOS and BBB parameters as well as the increase in tissue MPO content were positively affected by KYNA/KYNA analogues. Conclusion: This study is the first to report that KYNA and KYNA analogues are potential neuroprotective agents in experimental sepsis. The proposed mechanistic steps involve reduced peripheral NET formation, lowered BBB permeability changes and alleviation of mitochondrial dysfunction in the CNS.


Subject(s)
Kynurenic Acid/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Neutrophil Activation/drug effects , Neutrophil Activation/immunology , Sepsis/metabolism , Animals , Blood-Brain Barrier/metabolism , Disease Models, Animal , Kynurenic Acid/analogs & derivatives , Kynurenic Acid/chemical synthesis , Male , Permeability , Rats , Sepsis/drug therapy , Sepsis/etiology , Sepsis/pathology
2.
Front Med (Lausanne) ; 7: 566582, 2020.
Article in English | MEDLINE | ID: mdl-33330526

ABSTRACT

Introduction: Sepsis is a dysregulated host response to infection with macro- and microhemodynamic deterioration. Kynurenic acid (KYNA) is a metabolite of the kynurenine pathway of tryptophan catabolism with pleiotropic cell-protective effects under pro-inflammatory conditions. Our aim was to investigate whether exogenously administered KYNA or the synthetic analog SZR-72 affects the microcirculation and mitochondrial function in a clinically relevant rodent model of intraabdominal sepsis. Methods: Male Sprague-Dawley rats (n = 8/group) were subjected to fecal peritonitis (0.6 g kg-1 feces ip) or a sham operation. Septic animals were treated with sterile saline or received ip KYNA or SZR-72 (160 µmol kg-1 each) 16 and 22 h after induction. Invasive monitoring was performed on anesthetized animals to evaluate respiratory, cardiovascular, renal, hepatic and metabolic dysfunctions (PaO2/FiO2 ratio, mean arterial pressure, urea, AST/ALT ratio and lactate levels, respectively) based on the Rat Organ Failure Assessment (ROFA) score. The ratio of perfused vessels (PPV) of the ileal serosa was quantified with the intravital imaging technique. Complex I- and II-linked (CI; CII) oxidative phosphorylation capacities (OXPHOS) and mitochondrial membrane potential (ΔΨmt) were evaluated by High-Resolution FluoRespirometry (O2k, Oroboros, Austria) in liver biopsies. Plasma endothelin-1 (ET-1), IL-6, intestinal nitrotyrosine (NT) and xanthine oxidoreductase (XOR) activities were measured as inflammatory markers. Results: Sepsis was characterized by an increased ROFA score (5.3 ± 1.3 vs. 1.3 ± 0.7), increased ET-1, IL-6, NT and XOR levels, and decreased serosal PPV (65 ± 12% vs. 87 ± 7%), ΔΨmt and CI-CII-linked OXPHOS (73 ± 16 vs. 158 ± 14, and 189 ± 67 vs. 328 ± 81, respectively) as compared to controls. Both KYNA and SZR-72 reduced systemic inflammatory activation; KYNA treatment decreased serosal perfusion heterogeneity, restored PPV (85 ± 11%) and complex II-linked OXPHOS (307 ± 38), whereas SZR-72 improved both CI- and CII-linked OXPHOS (CI: 117 ± 18; CII: 445 ± 107) without effects on PPV 24 h after sepsis induction. Conclusion: Treatment with SZR-72 directly modulates mitochondrial respiration, leading to improved conversion of ADP to ATP, while administration of KYNA restores microcirculatory dysfunction. The results suggest that microcirculatory and mitochondrial resuscitation with KYNA or the synthetic analog SZR-72 might be an appropriate supportive tool in sepsis therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...