Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24580339

ABSTRACT

In a plane Couette cell a thin fluid layer consisting of water is sheared between the sides of a transparent band at Reynolds numbers ranging from 300 to 1400. The length of the cell's flow channel is large compared to the film separation. To extract the flow velocity in the experiments, a correlation image velocimetry method is used on pictures recorded with a high-speed camera. The flow is recorded at a resolution that allows us to analyze flow patterns similar in size to the film separation. The fluid flow is then studied by calculating flow velocity autocorrelation functions. The turbulent patterns that arise on this scale above a critical Reynolds number of Re=360 display characteristic patterns that are proven by use of the calculated velocity autocorrelation functions. The patterns are metastable and reappear at different positions and times throughout the experiments. Typically these patterns are turbulent rolls which are elongated in the stream direction, which is the direction in which the band is moving. Although the flow states are metastable they possess similarities to the steady Taylor vortices known to appear in circular Taylor Couette cells.

2.
Article in English | MEDLINE | ID: mdl-24329348

ABSTRACT

It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

3.
Phys Rev Lett ; 110(14): 145501, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-25167006

ABSTRACT

We study the fluctuations of the global velocity V(l)(t), computed at various length scales l, during the intermittent mode-I propagation of a crack front. The statistics converge to a non-Gaussian distribution, with an asymmetric shape and a fat tail. This breakdown of the central limit theorem (CLT) is due to the diverging variance of the underlying local crack front velocity distribution, displaying a power law tail. Indeed, by the application of a generalized CLT, the full shape of our experimental velocity distribution at large scale is shown to follow the stable Levy distribution, which preserves the power law tail exponent under upscaling. This study aims to demonstrate in general for crackling noise systems how one can infer the complete scale dependence of the activity--and extreme event distributions--by measuring only at a global scale.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036104, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22060453

ABSTRACT

We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 2): 046108, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21599241

ABSTRACT

We have studied the propagation of a crack front along the heterogeneous weak plane of a transparent poly(methyl methacrylate) (PMMA) block using two different loading conditions: imposed constant velocity and creep relaxation. We have focused on the intermittent local dynamics of the fracture front for a wide range of average crack front propagation velocities spanning over four decades. We computed the local velocity fluctuations along the fracture front. Two regimes are emphasized: a depinning regime of high velocity clusters defined as avalanches and a pinning regime of very low-velocity creeping lines. The scaling properties of the avalanches and pinning lines (size and spatial extent) are found to be independent of the loading conditions and of the average crack front velocity. The distribution of local fluctuations of the crack front velocity are related to the observed avalanche size distribution. Space-time correlations of the local velocities show a simple diffusion growth behavior.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036308, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19905213

ABSTRACT

We report on experimental studies of steady-state two-phase flow in a quasi-two-dimensional porous medium. The wetting and the nonwetting phases are injected simultaneously from alternating inlet points into a Hele-Shaw cell containing one layer of randomly distributed glass beads, initially saturated with wetting fluid. The high viscous wetting phase and the low viscous nonwetting phase give a low viscosity ratio M=10(-4). Transient behavior of this system is observed in time and space. However, we find that at a certain distance behind the initial front a "local" steady-state develops, sharing the same properties as the later "global" steady state. In this state the nonwetting phase is fragmented into clusters, whose size distribution is shown to obey a scaling law, and the cutoff cluster size is found to be inversely proportional to the capillary number. The steady state is dominated by bubble dynamics, and we measure a power-law relationship between the pressure gradient and the capillary number. In fact, we demonstrate that there is a characteristic length scale in the system, depending on the capillary number through the pressure gradient that controls the steady-state dynamics.


Subject(s)
Models, Theoretical , Rheology/methods , Solutions/chemistry , Computer Simulation , Phase Transition , Porosity , Wettability
7.
Phys Rev Lett ; 102(7): 074502, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257676

ABSTRACT

We study experimentally the case of steady-state simultaneous two-phase flow in a quasi-two-dimensional porous media. The dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution as well as the relation |nablaP| proportional, sqrt[Ca] between the pressure gradient in the system and the capillary number.

SELECTION OF CITATIONS
SEARCH DETAIL
...