Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 62(1): 135-40, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21505867

ABSTRACT

Amphibians in alpine wetlands of the Sierra Nevada mountains comprise key components of an aquatic-terrestrial food chain, and mercury contamination is a concern because concentrations in fish from this region exceed thresholds of risk to piscivorous wildlife. Total mercury concentrations were measured in whole tadpoles of the Sierra chorus frog, Pseudacris sierra, two times at 27 sites from high elevations (2786-3375 m) in the southern Sierra Nevada. Median mercury concentrations were 14 ng/g wet weight (154 ng/g dry weight), which were generally low in comparison to tadpoles of 15 other species/location combinations from studies that represented both highly contaminated and minimally contaminated sites. Mercury concentrations in P. sierra were below concentrations known to be harmful in premetamorphic tadpoles of another species and below threshold concentrations for risk to predaceous wildlife. Concentrations in tadpoles were also lower than those observed in predaceous fish in the study region presumably because tadpoles in the present study were much younger (1-2 months) than fish in the other study (3-10 years), and tadpoles represent a lower trophic level than these fish. Mercury concentrations were not related to distance from the adjacent San Joaquin Valley, a source of agricultural and industrial pollutants.


Subject(s)
Anura , Environmental Monitoring , Larva/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Animals , California , Wetlands
2.
Environ Toxicol Chem ; 30(3): 682-91, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21298712

ABSTRACT

Atmospherically deposited pesticides from the intensively cultivated Central Valley of California, USA, have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the frogs Rana muscosa and Rana sierrae at high elevation in the Sierra Nevada mountains. Previous studies on these species have relied on correlations between frog population status and either a metric for amount of upwind pesticide use or limited measurements of pesticide concentrations in the field. The present study tested the hypothesis that pesticide concentrations are negatively correlated with frog population status (i.e., fraction of suitable water bodies occupied within 2 km of a site) by measuring pesticide concentrations in multiple media twice at 28 sites at high elevation in the southern Sierra Nevada. Media represented were air, sediment, and Pseudacris sierra tadpoles. Total cholinesterase (ChE), which has been used as an indicator for organophosphorus and carbamate pesticide exposure, was also measured in P. sierra tadpoles. Results do not support the pesticide-site occupancy hypothesis. Among 46 pesticide compounds analyzed, nine were detected with ≥ 30% frequency, representing both historically and currently used pesticides. In stepwise regressions with a chemical metric and linear distance from the Central Valley as predictor variables, no negative association was found between frog population status and the concentration of any pesticide or tadpole ChE activity level. By contrast, frog population status showed a strong positive relationship with linear distance from the Valley, a pattern that is consistent with a general west-to-east spread across central California of the amphibian disease chytridiomycosis observed by other researchers.


Subject(s)
Environmental Pollutants/analysis , Pesticides/analysis , Ranidae , Animals , California , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Environmental Pollution/statistics & numerical data , Population Dynamics
3.
Environ Toxicol Chem ; 29(5): 1056-66, 2010 May.
Article in English | MEDLINE | ID: mdl-20821540

ABSTRACT

Atmospherically deposited contaminants in the Sierra Nevada mountains of California, USA have been implicated as adversely affecting amphibians and fish, yet little is known about the distributions of contaminants within the mountains, particularly at high elevation. The hypothesis that contaminant concentrations in a high-elevation portion of the Sierra Nevada decrease with distance from the adjacent San Joaquin Valley was tested. Air, sediment, and tadpoles were sampled twice at 28 water bodies in 14 dispersed areas in Sequoia and Kings Canyon National Parks (2,785-3,375 m elevation; 43-82 km from Valley edge). Up to 15 chemicals were detected frequently in sediment and tadpoles, including current- and historic-use pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Only beta-endosulfan was found frequently in air. Concentrations of all chemicals detected were very low, averaging in the parts-per-billion range or less in sediment and tadpoles, and on the order of 10 pg/m3 for beta-endosulfan in air. Principal components analysis indicated that chemical compositions were generally similar among sites, suggesting that chemical transport patterns were likewise similar among sites. In contrast, transport processes did not appear to strongly influence concentration differences among sites, because variation in concentrations among nearby sites was high relative to sites far from each other. Moreover, a general relationship for concentrations as a function of distance from the valley was not evident across chemical, medium, and time. Nevertheless, concentrations for some chemical/medium/time combinations showed significant negative relationships with metrics for distance from the Valley. However, the magnitude of these distance effects among high-elevation sites was small relative to differences found in other studies between the valley edge and the nearest high-elevation sites.


Subject(s)
Air Pollutants/chemistry , Altitude , Air Pollutants/metabolism , Animals , Anura/metabolism , Atmosphere , California , Environmental Monitoring , Larva/metabolism
4.
Environ Sci Technol ; 44(12): 4609-14, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20496891

ABSTRACT

Agricultural pesticides are being transported by air large distances to remote mountain areas and have been implicated as a cause for recent population declines of several amphibian species in such locations. Largely unmeasured, however, are the magnitude and temporal variation of pesticide concentrations in these areas, and the relationship between pesticide use and pesticide appearance in the montane environment. We addressed these topics in the southern Sierra Nevada mountains, California, by sampling water weekly or monthly from four alpine lakes from mid-June to mid-October 2003. The lakes were 46-83 km from the nearest pesticide sources in the intensively cultivated San Joaquin Valley. Four of 41 target pesticide analytes were evaluated for temporal patterns: endosulfan, propargite, dacthal, and simazine. Concentrations were very low, approximately 1 ng/L or less, at all times. The temporal patterns in concentrations differed among the four pesticides, whereas the temporal pattern for each pesticide was similar among the four lakes. For the two pesticides applied abundantly in the San Joaquin Valley during the sampling period, endosulfan and propargite, temporal variation in concentrations corresponded strikingly with application rates in the Valley with lag times of 1-2 weeks. A finer-scale analysis suggests that a large fraction of these two pesticides reaching the lakes originated in localized upwind areas within the Valley.


Subject(s)
Atmosphere/chemistry , Ecosystem , Fresh Water/chemistry , Pesticide Residues/analysis , California , Cyclohexanes/analysis , Endosulfan/analysis , Geography , Phthalic Acids/analysis , Simazine/analysis , Surface Properties , Time Factors , United States
5.
Talanta ; 81(4-5): 1380-6, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20441911

ABSTRACT

An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC-MS) was developed to determine trace levels of a variety of 41 agricultural pesticides and selected transformation products in high-elevation surface waters. Large-volume water sampling (up to 100L) was employed because it was anticipated that pesticide contamination, if present, would be at very low levels. The target compounds comprise pesticides (and selected oxygen transformation products) known to have been extensively used in agriculture in the San Joaquin Valley, CA, USA. Solid phase extraction using the polymeric resin Abselut Nexus was optimized to extract the pesticide analytes from water samples. A single determinative method using GC-MS with electron ionization was used for all the analytes. Recoveries from 100L of reagent water at 100pg/L and 1ng/L concentrations were generally greater than 75%, although dimethoate, disulfoton, and phorate were not recovered. Analysis of the extracts without cleanup yielded detection limits for the remaining 38 analytes between 0.1 and 30ng/L. A silica cleanup with separate analysis of 3 eluant fractions improved detection limits for 37 of the compounds to between 6 and 600pg/L in high-elevation surface waters.


Subject(s)
Chemistry Techniques, Analytical , Pesticide Residues/analysis , Pesticides/analysis , Solid Phase Extraction/methods , Water Purification/methods , Water/chemistry , Absorption , Agriculture/methods , Dimethoate/analysis , Disulfoton/analysis , Gas Chromatography-Mass Spectrometry/methods , Pesticide Residues/isolation & purification , Pesticides/isolation & purification , Phorate/analysis , Silicon Dioxide/chemistry , Temperature , Water Pollutants/analysis
6.
Environ Toxicol Chem ; 28(10): 2038-43, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19432502

ABSTRACT

Analytical methods capable of trace measurement of semivolatile organic compounds (SOCs) are necessary to assess the exposure of tadpoles to contaminants as a result of long-range and regional atmospheric transport and deposition. The present study compares the results of two analytical methods, one using pressurized liquid extraction (PLE) and the other using matrix solid-phase dispersion (MSPD), for the trace measurement of more than 70 SOCs in tadpole tissue, including current-use pesticides. The MSPD method resulted in improved SOC recoveries and precision compared to the PLE method. The MSPD method also required less time, consumed less solvent, and resulted in the measurement of a greater number of SOCs than the PLE method.


Subject(s)
Chemistry Techniques, Analytical/methods , Organic Chemicals/analysis , Ranidae/metabolism , Solid Phase Extraction/methods , Animals , Larva/chemistry , Pressure , Reproducibility of Results , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...