Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Viruses ; 15(7)2023 07 15.
Article in English | MEDLINE | ID: mdl-37515241

ABSTRACT

The unprecedented COVID-19 pandemic posed major challenges to local, regional, and global economies and health systems, and fast clinical diagnostic workflows were urgently needed to contain the spread of SARS-CoV-2. Here, we describe the platform and workflow established at the Cornell COVID-19 Testing Laboratory (CCTL) for the high-throughput testing of clinical samples from the university and the surrounding community. This workflow enabled efficient and rapid detection and the successful control of SARS-CoV-2 infection on campus and its surrounding communities. Our cost-effective and fully automated workflow enabled the testing of over 8000 pooled samples per day and provided results for over 2 million samples. The automation of time- and effort-intensive sample processing steps such as accessioning and pooling increased laboratory efficiency. Customized software applications were developed to track and store samples, deconvolute positive pools, track and report results, and for workflow integration from sample receipt to result reporting. Additionally, quality control dashboards and turnaround-time tracking applications were built to monitor assay and laboratory performance. As infectious disease outbreaks pose a constant threat to both human and animal health, the highly effective workflow implemented at CCTL could be modeled to establish regional high-capacity testing hubs for infectious disease preparedness and emergency response.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19 Testing , COVID-19/diagnosis , SARS-CoV-2 , Clinical Laboratory Techniques/methods , Pandemics
2.
Microbiol Spectr ; 10(3): e0226421, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35575498

ABSTRACT

In the present study, we assessed the diagnostic sensitivity and determined the viral RNA load and infectivity of SARS-CoV-2 in paired respiratory (nasopharyngeal and anterior nares) and oral samples (saliva and sublingual swab). Samples were collected from 77 individuals of which 75 were diagnosed with COVID-19 and classified as symptomatic (n = 29), asymptomatic (n = 31), or postsymptomatic (n = 15). Specimens were collected at one time point from each individual, between day 1 and 23 after the initial COVID-19 diagnosis, and included self-collected saliva (S), or sublingual (SL) swab, and bilateral anterior nares (AN) swab, followed by health care provider collected nasopharyngeal (NP) swab. Sixty-three specimen sets were tested using five assay/platforms. The diagnostic sensitivity of each assay/platform and specimen type was determined. Of the 63 specimen sets, SARS-CoV-2 was detected in 62 NP specimens, 52 AN specimens, 59 saliva specimens, and 31 SL specimens by at least one platform. Infectious SARS-CoV-2 was isolated from 21 NP, 13 AN, 12 saliva, and one SL specimen out of 50 specimen sets. SARS-CoV-2 isolation was most successful up to 5 days after initial COVID-19 diagnosis using NP specimens from symptomatic patients (16 of 24 positives, 66.67%), followed by specimens from asymptomatic patients (5 of 17 positives, 29.41%), while it was not very successful with specimens from postsymptomatic patients. Benefits of self-collected saliva and AN specimens balance the loss of sensitivity relative to NP specimens. Therefore, saliva and AN specimens are acceptable alternatives for symptomatic SARS-CoV-2 diagnostic testing or surveillance with increased sampling frequency of asymptomatic individuals. IMPORTANCE The dynamics of infection with SARS-CoV-2 have a significant impact on virus infectivity and in the diagnostic sensitivity of molecular and classic virus detection tests. In the present study we determined the diagnostic sensitivity of paired respiratory (nasopharyngeal and anterior nares swabs) and oral secretions (saliva and sublingual swab) and assessed infectious virus shedding patterns by symptomatic, asymptomatic, or postsymptomatic individuals. Understanding the diagnostic performance of these specimens and the patterns of infectious virus shedding in these bodily secretions provides critical information to control COVID-19, and may help to refine guidelines on isolation and quarantine of positive individuals and their close contacts identified through epidemiological investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Specimen Handling , Viral Load
3.
Arch Virol ; 166(9): 2551-2561, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34259914

ABSTRACT

The aim of this study was to identify and validate a sensitive, high-throughput, and cost-effective SARS-CoV-2 real-time RT-PCR assay to be used as a surveillance and diagnostic tool for SARS-CoV-2 in a university surveillance program. We conducted a side-by-side clinical evaluation of a newly developed SARS-CoV-2 multiplex assay (EZ-SARS-CoV-2 Real-Time RT-PCR) with the commercial TaqPath COVID-19 Combo Kit, which has an Emergency Use Authorization from the FDA. The EZ-SARS-CoV-2 RT-PCR incorporates two assays targeting the SARS-CoV-2 N gene, an internal control targeting the human RNase P gene, and a PCR inhibition control in a single reaction. Nasopharyngeal (NP) and anterior nares (AN) swabs were tested as individuals and pools with both assays and in the ABI 7500 Fast and the QuantStudio 5 detection platforms. The analytical sensitivity of the EZ-SARS-CoV-2 RT-PCR assay was 250 copies/ml or approximately 1.75 genome copy equivalents per reaction. The clinical performance of the EZ-SARS-CoV-2 assay was evaluated using NP and AN samples tested in other laboratories. The diagnostic sensitivity of the assay ranged between 94 and 96% across the detection platforms, and the diagnostic specificity was 94.06%. The positive predictive value was 94%, and the negative predictive value ranged from 94 to 96%. Pooling five NP or AN specimens yielded 93% diagnostic sensitivity. The overall agreement between these SARS-CoV-2 RT-PCR assays was high, supported by a Cohen's kappa value of 0.93. The EZ-SARS-CoV-2 RT-PCR assay performance attributes of high sensitivity and specificity with AN sample matrix and pooled upper respiratory samples support its use in a high-throughput surveillance testing program.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Multiplex Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/instrumentation , Epidemiological Monitoring , Gene Expression , Humans , Multiplex Polymerase Chain Reaction/economics , Multiplex Polymerase Chain Reaction/instrumentation , Nasal Cavity/virology , Nasopharynx/virology , Phosphoproteins/genetics , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling/methods , Viral Load
4.
J Vet Diagn Invest ; 32(6): 815-825, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32996402

ABSTRACT

The exquisite sensitivity of in vitro amplification assays such as real-time polymerase chain reaction (rtPCR) requires the establishment of thorough and robust laboratory practices. To this end, an American Association of Veterinary Laboratory Diagnosticians (AAVLD) committee of subject matter experts was convened to develop a set of best practices for performance of nucleic acid amplification assays. Consensus advice for the performance of preanalytical, analytical, and postanalytical steps is presented here, along with a review of supporting literature.


Subject(s)
Laboratories/standards , Real-Time Polymerase Chain Reaction/veterinary , Animals , Quality Control , Sensitivity and Specificity
5.
J Vet Diagn Invest ; 32(6): 802-814, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32988335

ABSTRACT

This consensus document presents the suggested guidelines developed by the Laboratory Technology Committee (LTC) of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) for development, validation, and modification (methods comparability) of real-time PCR (rtPCR) assays. These suggested guidelines are presented with reference to the World Organisation for Animal Health (OIE) guidelines for validation of nucleic acid detection assays used in veterinary diagnostic laboratories. Additionally, our proposed practices are compared to the guidelines from the Foods Program Regulatory Subdivision of the U.S. Food and Drug Administration (FDA) and from the American Society for Veterinary Clinical Pathology (ASVCP). The LTC suggestions are closely aligned with those from the OIE and comply with version 2021-01 of the AAVLD Requirements for an Accredited Veterinary Medical Diagnostic Laboratory, although some LTC recommendations are more stringent and extend beyond the AAVLD requirements. LTC suggested guidelines are substantially different than the guidelines recently published by the U.S. FDA for validation and modification of regulated tests used for detection of pathogens in pet food and animal-derived products, such as dairy. Veterinary diagnostic laboratories that perform assays from the FDA Bacteriological Analytical Method (BAM) manual must be aware of the different standard.


Subject(s)
Guideline Adherence/standards , Laboratories/standards , Real-Time Polymerase Chain Reaction/veterinary , Animals , Guidelines as Topic/standards , Pathology, Clinical/standards , Quality Control , Reproducibility of Results , United States
6.
Zoonoses Public Health ; 67(6): 684-696, 2020 09.
Article in English | MEDLINE | ID: mdl-32697888

ABSTRACT

Schoolyards and suburban parks are two environments where active tick surveillance may inform local management approaches. Even in a state such as New York with a robust active tick surveillance programme operated by the state Department of Health, these settings are not routinely covered. The goal of this study was to highlight the importance of active surveillance for tick-borne pathogens by describing their prevalence in ticks collected from schoolyards and suburban parks and to guide the use of integrated pest management in these settings. Tick dragging was performed in three regions of New York State: Long Island, the Lower Hudson Valley and the Capital Region. A total of 19 schoolyards and 32 parks were sampled. The location, habitat and weather at the time of tick collection were recorded. Ticks were speciated and tested for the presence of 17 pathogens with a novel application of nanoscale real-time PCR. The causative agents of Lyme disease, anaplasmosis, babesiosis and Powassan virus disease were all detected from Ixodes scapularis in various sites throughout the capital region and south-eastern counties of New York state. The most common agent detected was Borrelia burgdorferi, and coinfection rates were as high as 36%. This surveillance study also captured the first of the invasive Asian longhorned tick species, Haemaphysalis longicornis, in New York state (collected 2 June 2017). Results from this study highlight the importance of collaborative efforts and data sharing for improvement of surveillance for tick-borne disease agents.


Subject(s)
Bacteria/isolation & purification , Encephalitis Viruses, Tick-Borne/isolation & purification , Ixodidae/microbiology , Tick-Borne Diseases/microbiology , Animals , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , Encephalitis Viruses, Tick-Borne/classification , Female , Humans , Ixodidae/virology , Male , New York/epidemiology , Nymph , Phylogeny , Tick-Borne Diseases/epidemiology , Zoonoses
7.
Vet Clin North Am Equine Pract ; 36(2): 273-288, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32654783

ABSTRACT

Host defenses against infection by viruses, bacteria, fungi, and parasites are critical to survival. It has been estimated that upwards of 7% of the coding genes of mammals function in immunity and inflammation. This high level of genomic investment in defense has resulted in an immune system characterized by extraordinary complexity and many levels of redundancy. Because so many genes are involved with immunity, there are many opportunities for mutations to arise that have negative effects. However, redundancy in the mammalian defense system and the adaptive nature of key immune mechanisms buffer the untoward outcomes of many such deleterious mutations.


Subject(s)
Horse Diseases/genetics , Horse Diseases/immunology , Immune System Diseases/veterinary , Animals , Horses , Immune System Diseases/genetics , Immune System Diseases/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/veterinary
8.
J Vet Diagn Invest ; 32(6): 793-801, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31752630

ABSTRACT

Mycoplasma cynos is recognized as an emerging causative pathogen of canine infectious respiratory disease (CIRD) worldwide. We developed a new open-source real-time PCR (rtPCR) assay for M. cynos that performs well under standard rtPCR conditions. Primers and probes were designed to target the M. cynos tuf gene. Reaction efficiencies for the M. cynos tuf gene assay on 2 platforms were based on amplification of standard curves spanning 8 orders of magnitude: ABI 7500 platform, 94.3-97.9% (r2 ≥ 0.9935); QuantStudio OpenArray platform, 119.1-122.5% (r2 = 0.9784). The assay performed very well over a range of template input, from 109 copies to the lower limit of quantification at 4 copies of the M. cynos genome on the ABI 7500 platform. Diagnostic performance was estimated by comparison with an in-house legacy assay on clinical specimens as well as testing isolates that were characterized previously by intergenic spacer region (ISR) sequencing. Exclusivity was established by testing 12 other Mycoplasma species. To substantiate the high specificity of the M. cynos tuf gene assay, sequence confirmation was performed on ISR PCR amplicons obtained from clinical specimens. One ISR amplicon sequence revealed M. mucosicanis rather than M. cynos. The complete protocol of the newly developed M. cynos tuf assay is provided to facilitate assay harmonization.


Subject(s)
Dog Diseases/microbiology , Mycoplasma Infections/veterinary , Mycoplasma/isolation & purification , Respiratory Tract Infections/veterinary , Animals , DNA Primers , Dog Diseases/diagnosis , Dogs , Mycoplasma Infections/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Sensitivity and Specificity
9.
J Vet Diagn Invest ; 32(6): 758-766, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31735123

ABSTRACT

Many of the sample matrices typically used for veterinary molecular testing contain inhibitory factors that can potentially reduce analytic sensitivity or produce false-negative results by masking the signal produced by the nucleic acid target. Inclusion of internal controls in PCR-based assays is a valuable strategy not only for monitoring for PCR inhibitors, but also for monitoring nucleic acid extraction efficiency, and for identifying technology errors that may interfere with the ability of an assay to detect the intended target. The Laboratory Technology Committee of the American Association of Veterinary Laboratory Diagnosticians reviewed the different types of internal controls related to monitoring inhibition of PCR-based assays, and provides information here to encourage veterinary diagnostic laboratories to incorporate PCR internal control strategies as a routine quality management component of their molecular testing.


Subject(s)
Animal Diseases/diagnosis , Molecular Diagnostic Techniques/veterinary , Animals , Laboratories/standards , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/veterinary , Quality Control
10.
Microbiol Resour Announc ; 8(41)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31601660

ABSTRACT

Whole-genome sequencing of Mycoplasma mucosicanis type strain 1642 was performed to support efforts to better understand the clinical significance of Mycoplasma infection in canine health. The availability of this sequence will also further the development of highly specific diagnostic tests.

11.
PLoS One ; 13(9): e0202646, 2018.
Article in English | MEDLINE | ID: mdl-30183726

ABSTRACT

During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.


Subject(s)
Gene Expression Profiling , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Animals , Horses , Immunity, Cellular/genetics
12.
Front Vet Sci ; 5: 34, 2018.
Article in English | MEDLINE | ID: mdl-29594155

ABSTRACT

Equine herpesvirus type 1 (EHV-1) is a ubiquitous and highly contagious pathogen that causes a range of disease severities with outbreaks of notable economic impact. Given the limitations in immune protection of current vaccines and the limited effectiveness of antiviral drugs on EHV-1 infections in vivo, improved treatment measures are needed to control disease. The use of drugs that alter the epigenetic state of herpes simplex virus genome has been shown to limit viral primary infection and reactivation both in vitro and in vivo. Therefore, we tested the hypothesis that maintaining a repressive epigenetic state on the EHV-1 genome in the host equine cell would decrease viral load during lytic infection. Equine fetal kidney cells (EFKCs) or isolated peripheral blood leukocytes were treated in vitro with (a) the nucleoside analog ganciclovir; (b) the histone demethylase inhibitor OG-L002; (c) both ganciclovir and OG-L002; or (d) dimethyl sulfoxide (DMSO, vehicle control); and then infected with a clinical EHV-1 isolate. Treatment of EFKCs with ganciclovir (mean 22.3 DNA copies per cell, p = 0.0005), OG-L002 (mean 25.6, p = 0.005) or both ganciclovir and OG-L002 (mean 7.1, p = 0.0001) resulted in decreased EHV-1 viral load at 24 h post-infection (hpi) in comparison with DMSO (mean 42.0), with greater impact using the combined treatment. Further, EHV-1 gene expression at 3 hpi decreased when EFKCs were infected in the presence of ganciclovir (p = 0.04) and combined treatment of ganciclovir and OG-L002 (p = 0.0003). In contrast, under similar conditions, neither ganciclovir nor OG-L002 suppressed EHV-1 infection in leukocytes. Differences between cell types, drug penetrance, or drug turnover, may have contributed to the distinct effects observed in this study.

13.
Sci Rep ; 7(1): 12713, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28983085

ABSTRACT

In response to immunization, B-cells generate a repertoire of antigen-specific antibodies. Antibody-based immunotherapies hold great promise for treating a variety of diseases in humans. Application of antibody-based immunotherapy in cats is limited by the lack of species-specific complete sequences for mRNAs encoding rearranged heavy and light chain immunoglobulins in B cells. To address this barrier, we isolated mRNAs from feline peripheral blood mononuclear cells (PBMCs), and used available immunoglobulin sequences and 5' and 3' RACE to clone and sequence heavy and light chain immunoglobulin mRNAs. We recovered mRNA from PBMCs from two cats, cloned and sequenced the variable and constant domains of the feline heavy chains of IgG1a (IGHG1a), IgG2 (IGHG2), and IgA (IGHA), and the light chains (lambda and kappa). Using these sequences, we prepared two bicistronic vectors for mammalian expression of a representative feline heavy (IGHG1a) together with a light (lambda or kappa) chain. Here we report novel feline Ig sequences, a technique to express antigen-specific felinized monoclonal antibodies, and the initial characterization of a functional felinized monoclonal antibody against feline panleukopenia virus.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , Feline Panleukopenia Virus/immunology , Feline Panleukopenia/therapy , Immunoglobulin A/genetics , Immunoglobulin G/genetics , RNA, Messenger/genetics , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , B-Lymphocytes/immunology , Cats , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/genetics , Immunoglobulin kappa-Chains/biosynthesis , Immunoglobulin kappa-Chains/genetics , Immunoglobulin lambda-Chains/biosynthesis , Immunoglobulin lambda-Chains/genetics , Sequence Analysis, RNA
14.
Am J Vet Res ; 78(10): 1215-1228, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28945121

ABSTRACT

OBJECTIVE To develop an in vitro system for differentiation of equine B cells from bone marrow hematopoietic progenitor cells on the basis of protocols for other species. SAMPLE Bone marrow aspirates aseptically obtained from 12 research horses. PROCEDURES Equine bone marrow CD34+ cells were sorted by use of magnetic beads and cultured in medium supplemented with cytokines (recombinant human interleukin-7, equine interleukin-7, stem cell factor, and Fms-like tyrosine kinase-3), murine OP9 stromal cell preconditioned medium, and equine fetal bone marrow mesenchymal stromal cell preconditioned medium. Cells in culture were characterized by use of flow cytometry, immunocytofluorescence microscopy, and quantitative reverse-transcriptase PCR assay. RESULTS For these culture conditions, bone marrow-derived equine CD34+ cells differentiated into CD19+IgM+ B cells that expressed the signature transcription factors early B-cell factor and transcription factor 3. These conditions also supported the concomitant development of autologous stromal cells, and their presence was supportive of B-cell development. CONCLUSIONS AND CLINICAL RELEVANCE Equine B cells were generated from bone marrow aspirates by use of supportive culture conditions. In vitro generation of equine autologous B cells should be of use in studies on regulation of cell differentiation and therapeutic transplantation.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Cytokines/pharmacology , Horses , Stromal Cells/cytology , Animals , Bone Marrow Cells/drug effects , Cells, Cultured , Female , Flow Cytometry , Male , Mice
15.
PLoS One ; 12(5): e0177831, 2017.
Article in English | MEDLINE | ID: mdl-28520789

ABSTRACT

The value of prophylactic neonatal vaccination is challenged by the interference of passively transferred maternal antibodies and immune competence at birth. Taken our previous studies on equine B cell ontogeny, we hypothesized that the equine neonate generates a diverse immunoglobulin repertoire in response to vaccination, independently of circulating maternal antibodies. In this study, equine neonates were vaccinated with 3 doses of keyhole limpet hemocyanin (KLH) or equine influenza vaccine, and humoral immune responses were assessed using antigen-specific serum antibodies and B cell Ig variable region sequencing. An increase (p<0.0001) in serum KLH-specific IgG level was measured between days 21 and days 28, 35 and 42 in vaccinated foals from non-vaccinated mares. In vaccinated foals from vaccinated mares, serum KLH-specific IgG levels tended to increase at day 42 (p = 0.07). In contrast, serum influenza-specific IgG levels rapidly decreased (p≤0.05) in vaccinated foals from vaccinated mares within the study period. Nevertheless, IGHM and IGHG sequences were detected in KLH- and influenza- sorted B cells of vaccinated foals, independently of maternal vaccination status. Immunoglobulin nucleotide germline identity, IGHV gene usage and CDR length of antigen-specific IGHG sequences in B cells of vaccinated foals revealed a diverse immunoglobulin repertoire with isotype switching that was comparable between groups and to vaccinated mares. The low expression of CD27 memory marker in antigen-specific B cells, and of cytokines in peripheral blood mononuclear cells upon in vitro immunogen stimulation indicated limited lymphocyte population expansion in response to vaccine during the study period.


Subject(s)
Horse Diseases/immunology , Horses/immunology , Immunity, Humoral , Immunoglobulin Variable Region/immunology , Orthomyxoviridae Infections/veterinary , Vaccination/veterinary , Animals , Animals, Newborn , B-Lymphocytes/immunology , Female , Hemocyanins/immunology , Horse Diseases/prevention & control , Humans , Immunoglobulin Variable Region/blood , Immunoglobulin Variable Region/chemistry , Male , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Vaccination/methods
16.
Immunogenetics ; 69(5): 351-358, 2017 05.
Article in English | MEDLINE | ID: mdl-28315936

ABSTRACT

Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Genes, MHC Class I , Histocompatibility Antigens Class I/metabolism , Peptide Fragments/metabolism , Amino Acid Motifs , Animals , Haplotypes , Histocompatibility Antigens Class I/immunology , Horses , Peptide Fragments/immunology , Protein Binding , Protein Domains
17.
Immunogenetics ; 69(3): 145-156, 2017 03.
Article in English | MEDLINE | ID: mdl-27889800

ABSTRACT

The polymorphism of major histocompatibility complex (MHC) class II DQ and DR genes in five common equine leukocyte antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine bacterial artificial chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next generation sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse.


Subject(s)
HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Haplotypes/genetics , Horses/genetics , Major Histocompatibility Complex/genetics , Polymorphism, Genetic/genetics , Alleles , Amino Acid Sequence , Animals , Chromosomes, Artificial, Bacterial , Female , Gene Conversion , Gene Library , High-Throughput Nucleotide Sequencing , Homozygote , Male , Phylogeny , Polymerase Chain Reaction/veterinary , Sequence Homology, Amino Acid
18.
J Biomed Semantics ; 7: 1, 2016.
Article in English | MEDLINE | ID: mdl-26759709

ABSTRACT

BACKGROUND: MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. PURPOSE: To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. DESCRIPTION: This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. CONCLUSIONS: Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.


Subject(s)
Gene Ontology , Major Histocompatibility Complex/genetics , Animals , Databases, Protein , Epitopes/genetics , HLA Antigens/genetics , HLA Antigens/immunology , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Humans , Software
19.
Immunogenetics ; 67(11-12): 675-89, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26399241

ABSTRACT

Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Herpesvirus 1, Equid/immunology , Histocompatibility Antigens Class I/immunology , Peptide Fragments/immunology , Peptide Fragments/metabolism , T-Lymphocytes, Cytotoxic/immunology , Alleles , Animals , Herpesviridae Infections/genetics , Herpesviridae Infections/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesvirus 1, Equid/genetics , Histocompatibility Antigens Class I/metabolism , Horse Diseases/genetics , Horse Diseases/immunology , Horse Diseases/virology , Horses , Humans , Leukocytes, Mononuclear , Mice , Protein Binding , Proteome/immunology , T-Lymphocytes, Cytotoxic/metabolism , Tandem Mass Spectrometry
20.
Clin Vaccine Immunol ; 22(11): 1133-45, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26311245

ABSTRACT

Mature B cell neoplasms cover a spectrum of diseases involving lymphoid tissues (lymphoma) or blood (leukemia), with an overlap between these two presentations. Previous studies describing equine lymphoid neoplasias have not included analyses of clonality using molecular techniques. The objective of this study was to use molecular techniques to advance the classification of B cell lymphoproliferative diseases in five adult equine patients with a rare condition of monoclonal gammopathy, B cell leukemia, and concurrent lymphadenopathy (lymphoma/leukemia). The B cell neoplasms were phenotypically characterized by gene and cell surface molecule expression, secreted immunoglobulin (Ig) isotype concentrations, Ig heavy-chain variable (IGHV) region domain sequencing, and spectratyping. All five patients had hyperglobulinemia due to IgG1 or IgG4/7 monoclonal gammopathy. Peripheral blood leukocyte immunophenotyping revealed high proportions of IgG1- or IgG4/7-positive cells and relative T cell lymphopenia. Most leukemic cells lacked the surface B cell markers CD19 and CD21. IGHG1 or IGHG4/7 gene expression was consistent with surface protein expression, and secreted isotype and Ig spectratyping revealed one dominant monoclonal peak. The mRNA expression of the B cell-associated developmental genes EBF1, PAX5, and CD19 was high compared to that of the plasma cell-associated marker CD38. Sequence analysis of the IGHV domain of leukemic cells revealed mutated Igs. In conclusion, the protein and molecular techniques used in this study identified neoplastic cells compatible with a developmental transition between B cell and plasma cell stages, and they can be used for the classification of equine B cell lymphoproliferative disease.


Subject(s)
B-Lymphocytes , Horse Diseases/genetics , Leukemia, B-Cell/veterinary , Lymphatic Diseases/veterinary , Lymphopenia/veterinary , Lymphoproliferative Disorders/veterinary , Paraproteinemias/veterinary , Animals , Antigens, CD19/analysis , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Horses , Immunoglobulin Heavy Chains/genetics , Immunophenotyping , Leukemia, B-Cell/genetics , Leukemia, B-Cell/immunology , Lymphatic Diseases/genetics , Lymphatic Diseases/immunology , Lymphopenia/genetics , Lymphopenia/immunology , Lymphoproliferative Disorders/classification , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , PAX5 Transcription Factor/analysis , Paraproteinemias/genetics , Paraproteinemias/immunology , Plasma Cells , Receptors, Complement 3d/analysis , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...