Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 48(2): 352-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19962379

ABSTRACT

The cardiac sodium channel (SCN5A, Na(V)1.5) is a key determinant of electrical impulse conduction in cardiac tissue. Acute myocardial infarction leads to diminished sodium channel availability, both because of decreased channel expression and because of greater inactivation of channels already present. Myocardial infarction leads to significant increases in reactive oxygen species and their downstream effectors including lipoxidation products. The effects of reactive oxygen species on Na(V)1.5 function in whole hearts can be modeled in cultured myocytes, where oxidants shift the availability curve of I(Na) to hyperpolarized potentials, decreasing cardiac sodium current at the normal activation threshold. We recently examined potential mediators of the oxidant-induced inactivation and found that one specific lipoxidation product, the isoketals, recapitulated the effects of oxidant on sodium currents. Isoketals are highly reactive gamma-ketoaldehydes formed by the peroxidation of arachidonic acid that covalently modify the lysine residues of proteins. We now confirm that exposure to oxidants induces lipoxidative modification of Na(V)1.5 and that the selective isoketal scavengers block voltage-dependent changes in sodium current by the oxidant tert-butylhydroperoxide, both in cells heterologously expressing Na(V)1.5 and in a mouse cardiac myocyte cell line (HL-1). Thus, inhibition of this lipoxidative modification pathway is sufficient to protect the sodium channel from oxidant induced inactivation and suggests the potential use of isoketal scavengers as novel therapeutics to prevent arrhythmogenesis during myocardial infarction.


Subject(s)
Aldehydes/metabolism , Free Radical Scavengers/pharmacology , Ion Channel Gating/ethics , Oxidants/toxicity , Sodium Channels/metabolism , Action Potentials/drug effects , Amines/pharmacology , Cell Line , Humans , Ion Channel Gating/drug effects , Kinetics , NAV1.5 Voltage-Gated Sodium Channel , Oxidative Stress/drug effects , tert-Butylhydroperoxide/pharmacology
3.
J Am Chem Soc ; 123(22): 5181-7, 2001 Jun 06.
Article in English | MEDLINE | ID: mdl-11457379

ABSTRACT

5,6-Dihydrothymidin-5-yl (1) was independently generated in a dinucleotide from a phenyl selenide precursor (4). Under free radical chain propagation conditions, the products resulting from hydrogen atom donation and radical-pair reaction are the major observed products in the absence of O(2). The stereoselectivity of the trapping process is dependent on the structure of the hydrogen atom donor. No evidence for internucleotidyl hydrogen atom abstraction by 1 was detected. The tandem lesion (17) resulting from hydrogen atom abstraction from the C1' position of the adjacent 2'-deoxyuridine by the peroxyl radical derived from 1 (3) is observed under aerobic conditions. The structure of this product is confirmed by independent synthesis and its transformation into a second independently synthesized product (24). Internucleotidyl hydrogen atom abstraction is effected selectively by the 5S-diastereomer of the peroxyl radical. The formation of dinucleotide 17 provides further support for the novel O(2)-dependent DNA damage amplification mechanism involving 1 reported previously (Greenberg, M. M.; et al. J. Am. Chem. Soc. 1997, 119, 1828).


Subject(s)
DNA Damage , DNA/chemistry , Nucleic Acid Conformation , Oxygen/chemistry , Thymidine/chemistry , Photolysis , Thymidine/analogs & derivatives
4.
J Biol Chem ; 276(24): 20831-8, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-11259420

ABSTRACT

The mechanism of formation of 4-hydroxy-2E-nonenal (4-HNE) has been a matter of debate since it was discovered as a major cytotoxic product of lipid peroxidation in 1980. Recent evidence points to 4-hydroperoxy-2E-nonenal (4-HPNE) as the immediate precursor of 4-HNE (Lee, S. H., and Blair, I. A. (2000) Chem. Res. Toxicol. 13, 698-702; Noordermeer, M. A., Feussner, I., Kolbe, A., Veldink, G. A., and Vliegenthart, J. F. G. (2000) Biochem. Biophys. Res. Commun. 277, 112-116), and a pathway via 9-hydroperoxylinoleic acid and 3Z-nonenal is recognized in plant extracts. Using the 9- and 13-hydroperoxides of linoleic acid as starting material, we find that two distinct mechanisms lead to the formation of 4-H(P)NE and the corresponding 4-hydro(pero)xyalkenal that retains the original carboxyl group (9-hydroperoxy-12-oxo-10E-dodecenoic acid). Chiral analysis revealed that 4-HPNE formed from 13S-hydroperoxy-9Z,11E-octadecadienoic acid (13S-HPODE) retains >90% S configuration, whereas it is nearly racemic from 9S-hydroperoxy-10E,12Z-octadecadienoic acid (9S-HPODE). 9-Hydroperoxy-12-oxo-10E-dodecenoic acid is >90% S when derived from 9S-HPODE and almost racemic from 13S-HPODE. Through analysis of intermediates and products, we provide evidence that (i) allylic hydrogen abstraction at C-8 of 13S-HPODE leads to a 10,13-dihydroperoxide that undergoes cleavage between C-9 and C-10 to give 4S-HPNE, whereas direct Hock cleavage of the 13S-HPODE gives 12-oxo-9Z-dodecenoic acid, which oxygenates to racemic 9-hydroperoxy-12-oxo-10E-dodecenoic acid; by contrast, (ii) 9S-HPODE cleaves directly to 3Z-nonenal as a precursor of racemic 4-HPNE, whereas allylic hydrogen abstraction at C-14 and oxygenation to a 9,12-dihydroperoxide leads to chiral 9S-hydroperoxy-12-oxo-10E-dodecenoic acid. Our results distinguish two major pathways to the formation of 4-HNE that should apply also to other fatty acid hydroperoxides. Slight ( approximately 10%) differences in the observed chiralities from those predicted in the above mechanisms suggest the existence of additional routes to the 4-hydroxyalkenals.


Subject(s)
Aldehydes/chemistry , Linoleic Acids/chemistry , Linoleic Acids/metabolism , Lipid Peroxides/chemistry , Lipid Peroxides/metabolism , Aldehyde-Lyases/metabolism , Chromatography, High Pressure Liquid , Cucurbitaceae/enzymology , Cytochrome P-450 Enzyme System/metabolism , Kinetics , Lipoxygenase/metabolism , Recombinant Proteins/metabolism , Glycine max/enzymology , Spectrophotometry, Ultraviolet , Stereoisomerism , Vitamin E/chemistry
5.
Nucleic Acids Res ; 27(19): 3805-10, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10481019

ABSTRACT

The formal C1'-oxidation product, 2-deoxyribonolactone, is formed as a result of DNA damage induced via a variety of agents, including gamma-radiolysis and the enediyne antitumor antibiotics. This alkaline labile lesion may also be an intermediate during DNA damage induced by copper-phenanthroline. Oligo-nucleotides containing this lesion at a defined site were formed via aerobic photolysis of oligonucleotides containing a photolabile ketone, and were characterized by gel electrophoresis and electrospray mass spectrometry (ESI-MS). Treatment of oligo-nucleotides containing the lesion with secondary amines produces strand breaks consisting of 3'-phosphate termini, and products which migrate more slowly in polyacrylamide gels. MALDI-TOF mass spectrometry analysis indicates that the slower moving products are formal adducts of the beta-elimination product resulting from 2-deoxyribonolactone and one molecule of amine. The addition of beta-mercapto-ethanol to the reaction mixture produces thiol adducts as well. The stability of these adducts suggests that they cannot be the labile species characterized by gel electrophoresis in copper-phenanthroline-mediated strand scission. The characterization of these adducts by mass spectrometry also provides, by analogy, affirmation of proposals regarding the reactivity of nucleophiles with the beta-elimination product of abasic sites. Finally, the effects of this lesion and the various adducts on DNA repair enzymes are unknown, but their facile generation from oligonucleotides containing a photolabile ketone suggests that such issues could be addressed.


Subject(s)
DNA Damage , DNA Repair , DNA, Single-Stranded/chemistry , Sugar Acids/chemistry , Ammonia , DNA Adducts , Ethylenediamines , Mercaptoethanol , Oligodeoxyribonucleotides/chemistry , Piperidines , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...