Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 112(7): 1342-8, 2006 May.
Article in English | MEDLINE | ID: mdl-16489428

ABSTRACT

Incorporation of genetic resistance against several biotic stresses that plague cultivated peanut, Arachis hypogaea (2n = 4x = 40), is an ideal option to develop disease resistant and ecologically safe peanut varieties. The primary gene pool of peanut contains many diploid wild species (2n = 2x = 20) of Arachis, which have high levels of disease and insect resistances. However, transfer of resistant genes from these species into A. hypogaea is difficult due to ploidy level differences and genomic incompatibilities. This study was conducted to monitor alien germplasm transmission, using Random Amplified Polymorphic DNA (RAPD) markers, from two diploid wild species, A. cardenasii and A. batizocoi, into A. hypogaea. Triploid interspecific hybrids were produced by crossing two A. hypogaea cultivars (NC 6 and Argentine) with the two species and by colchicine-treating vegetative meristems, fertility was restored at the hexaploid (C(o)) level in the four hybrids. Hexaploids were allowed to self-pollinate for four generations, each referred to as a cycle (C1, C2, C3, and C4). At each cycle, a backcross was made with the respective A. hypogaea cultivar as the maternal parent and only lineages tracing back to a single hexaploid hybrid were used for RAPD analysis. Analysis of mapped, species-specific RAPD markers in BC1F1 to BC1F3 hybrids indicated that alien germplasm retention decreased every generation of inbreeding, especially in Argentine and in A. batizocoi crosses. A similar trend was also observed for every cycle in BC1F2 and BC1F3 families, possibly, due to the loss of alien chromosomes following selfing of hexaploids. RAPD marker analysis of 40-chromosome interspecific hybrid derivatives from the four crosses supported previous reports that reciprocal recombination and/or translocations are the predominant mechanisms for exchange of chromosomal segments. No evidence was found for preferential transfer of alien chromosomal regions to specific linkage groups. The implications for developing disease resistant peanut breeding lines are discussed in light of these findings.


Subject(s)
Arachis/classification , Arachis/genetics , Genes, Plant , Arachis/drug effects , Chromosome Mapping , Chromosomes, Plant , Colchicine/pharmacology , Crosses, Genetic , Diploidy , Fertility/genetics , Gene Pool , Genetic Markers , Genome, Plant , Hybridization, Genetic , Mitosis , Polyploidy , Random Amplified Polymorphic DNA Technique , Species Specificity
2.
Cryobiology ; 52(2): 200-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16359655

ABSTRACT

Carbohydrates have long been recognized as an important aspect of freezing tolerance in plants but the association between these two factors is often ambiguous. To help clarify the relationship, the allocation of carbohydrates between specific tissues within the over wintering organ (crown) of winter cereals was measured. A winter-hardy and non-winter-hardy oat (Avena sativa L.), and a rye (Secale cereale L.) cultivar were grown and frozen under controlled conditions. Crown tissue was fractionated into an upper portion, called the apical region, and a lower portion, called the lower crown. These tissues were ground in liquid N and extracted with water. Extracts were analyzed by HPLC for the simple sugars, sucrose, glucose, fructose, and for fructan of various size classes. After 3 weeks of cold acclimation at 3 degrees C, carbohydrates accounted for approximately 40% of the dry weight of oats and 60% of the dry weight of rye. The apical region, which is the tissue within the crown that acclimates to the greatest extent, was generally 10% higher in total carbohydrates than the lower crown. During a mild freeze, various carbohydrates were allocated differently between specific tissues in the three genotypes. When frozen, fructan generally decreased to a greater extent in the lower crown than in the apical region but sugars increased more in the apical region than in the lower crown. Results suggest that to understand how carbohydrates relate to freezing tolerance, regions of the crown that endure freezing stress differently should be compared.


Subject(s)
Acclimatization , Avena/chemistry , Carbohydrates/analysis , Cold Temperature , Freezing , Secale/chemistry , Carbohydrates/chemistry , Fructans/analysis
3.
Theor Appl Genet ; 111(7): 1229-37, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16187123

ABSTRACT

Section Arachis is the largest of nine sections in the genus Arachis and includes domesticated peanut, A. hypogaea L. Most species are diploids (x = 10) with two tetraploids and a few aneuploids. Three genome types have been recognized in this section (A, B and D), but the genomes are not well characterized and relationships of several newly described species are uncertain. To clarify genomic relationships in section Arachis, cytogenetic information and molecular data from amplified fragment length polymorphism (AFLP) and the trnT-F plastid region were used to provide an additional insight into genome composition and species relationships. Cytogenetic information supports earlier observations on genome types of A. cruziana, A. herzogii, A. kempff-mercadoi and A. kuhlmannii but was inconclusive about the genome composition of A. benensis, A. hoehnei, A. ipaensis, A. palustris, A. praecox and A. williamsii. An AFLP dendrogram resolved species into four major clusters and showed A. hypogaea grouping closely with A. ipaensis and A. williamsii. Sequence data of the trnT-F region provided genome-specific information and showed for the first time that the B and D genomes are more closely related to each other than to the A genome. Integration of information from cytogenetics and biparentally and maternally inherited genomic regions show promise in understanding genome types and relationships in Arachis.


Subject(s)
Arachis/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Phylogeny , Arachis/classification , Base Sequence , Cluster Analysis , Crosses, Genetic , Cytogenetic Analysis , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Nucleic Acid Amplification Techniques , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA
4.
Ann Bot ; 96(2): 331-5, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15894549

ABSTRACT

BACKGROUND AND AIMS: Contradictory results in correlation studies of plant carbohydrates with freezing tolerance may be because whole crown tissue is analysed for carbohydrates while differences exist in the survival of specific tissue within the crown. The aim of this study was to see if carbohydrate changes in tissue within oat crowns during second phase hardening (sub-zero hardening) are tissue specific. METHODS: The lower portion of oat (Avena sativa) crowns was exposed to mild grinding in a blender and the remaining crown meristem complex, consisting of tough root-like vessels, was ground in a device developed specifically for grinding cereal crown tissue. Carbohydrates were extracted by water and measured by HPLC. Carbohydrate concentrations were compared in the two regions of the crown before and after hardening at sub-zero temperatures. KEY RESULTS: Fructan of all size classes except DP>6 decreased during sub-zero hardening in both stems (base of leaf sheath) and crown meristem complex. Total simple sugar increase, including sucrose, was significantly higher in the crown meristem complex than in the stem. CONCLUSIONS: Results support the hypothesis that carbohydrate change in mildly frozen plants is tissue specific within crowns and underscore the need to evaluate specific tissue within the crown when correlating the biochemistry of plants with freezing tolerance.


Subject(s)
Avena/metabolism , Carbohydrate Metabolism , Meristem/metabolism , Adaptation, Physiological , Analysis of Variance , Avena/growth & development , Avena/physiology , Freezing
SELECTION OF CITATIONS
SEARCH DETAIL
...