Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867042

ABSTRACT

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.

2.
Genome Biol ; 23(1): 89, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379293

ABSTRACT

BACKGROUND: Promoters are sites of transcription initiation that harbour a high concentration of phenotype-associated genetic variation. The evolutionary gain and loss of promoters between species (collectively, termed turnover) is pervasive across mammalian genomes and may play a prominent role in driving human phenotypic diversity. RESULTS: We classified human promoters by their evolutionary history during the divergence of mouse and human lineages from a common ancestor. This defined conserved, human-inserted and mouse-deleted promoters, and a class of functional-turnover promoters that align between species but are only active in humans. We show that promoters of all evolutionary categories are hotspots for substitution and often, insertion mutations. Loci with a history of insertion and deletion continue that mode of evolution within contemporary humans. The presence of an evolutionary volatile promoter within a gene is associated with increased expression variance between individuals, but only in the case of human-inserted and mouse-deleted promoters does that correspond to an enrichment of promoter-proximal genetic effects. Despite the enrichment of these molecular quantitative trait loci (QTL) at evolutionarily volatile promoters, this does not translate into a corresponding enrichment of phenotypic traits mapping to these loci. CONCLUSIONS: Promoter turnover is pervasive in the human genome, and these promoters are rich in molecularly quantifiable but phenotypically inconsequential variation in gene expression. However, since evolutionarily volatile promoters show evidence of selection, coupled with high mutation rates and enrichment of QTLs, this implicates them as a source of evolutionary innovation and phenotypic variation, albeit with a high background of selectively neutral expression variation.


Subject(s)
Genome, Human , Quantitative Trait Loci , Animals , Humans , Mammals , Mutation Rate , Phenotype , Promoter Regions, Genetic
3.
Genome Res ; 31(11): 1994-2007, 2021 11.
Article in English | MEDLINE | ID: mdl-34417209

ABSTRACT

Mutation in the germline is the ultimate source of genetic variation, but little is known about the influence of germline chromatin structure on mutational processes. Using ATAC-seq, we profile the open chromatin landscape of human spermatogonia, the most proliferative cell type of the germline, identifying transcription factor binding sites (TFBSs) and PRDM9 binding sites, a subset of which will initiate meiotic recombination. We observe an increase in rare structural variant (SV) breakpoints at PRDM9-bound sites, implicating meiotic recombination in the generation of structural variation. Many germline TFBSs, such as NRF1, are also associated with increased rates of SV breakpoints, apparently independent of recombination. Singleton short insertions (≥5 bp) are highly enriched at TFBSs, particularly at sites bound by testis active TFs, and their rates correlate with those of structural variant breakpoints. Short insertions often duplicate the TFBS motif, leading to clustering of motif sites near regulatory regions in this male-driven evolutionary process. Increased mutation loads at germline TFBSs disproportionately affect neural enhancers with activity in spermatogonia, potentially altering neurodevelopmental regulatory architecture. Local chromatin structure in spermatogonia is thus pervasive in shaping both evolution and disease.


Subject(s)
Genome, Human , Spermatogonia , Binding Sites , Chromatin Immunoprecipitation Sequencing , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Mutation , Spermatogonia/metabolism
4.
Nature ; 583(7815): 265-270, 2020 07.
Article in English | MEDLINE | ID: mdl-32581361

ABSTRACT

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Subject(s)
Chromosome Segregation/genetics , Evolution, Molecular , Genome/genetics , Neoplasms/genetics , Alleles , Animals , DNA Repair , DNA Replication , ErbB Receptors/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mutation , Neoplasms/pathology , Selection, Genetic , Signal Transduction , Sister Chromatid Exchange , Transcription, Genetic , raf Kinases/metabolism , ras Proteins/metabolism
5.
Cell Syst ; 10(4): 351-362.e8, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32275854

ABSTRACT

In the human genome, most genes undergo splicing, and patterns of codon usage are splicing dependent: guanine and cytosine (GC) content is the highest within single-exon genes and within first exons of multi-exon genes. However, the effects of codon usage on gene expression are typically characterized in unspliced model genes. Here, we measured the effects of splicing on expression in a panel of synonymous reporter genes that varied in nucleotide composition. We found that high GC content increased protein yield, mRNA yield, cytoplasmic mRNA localization, and translation of unspliced reporters. Splicing did not affect the expression of GC-rich variants. However, splicing promoted the expression of AT-rich variants by increasing their steady-state protein and mRNA levels, in part through promoting cytoplasmic localization of mRNA. We propose that splicing promotes the nuclear export of AU-rich mRNAs and that codon- and splicing-dependent effects on expression are under evolutionary pressure in the human genome.


Subject(s)
Codon Usage/genetics , RNA Transport/genetics , RNA, Messenger/metabolism , Active Transport, Cell Nucleus/genetics , Alternative Splicing/genetics , Alternative Splicing/physiology , Base Composition/genetics , Codon/genetics , Exons/genetics , Gene Expression/genetics , Genome, Human/genetics , HEK293 Cells , HeLa Cells , Humans , RNA Splicing/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...