Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38490196

ABSTRACT

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Subject(s)
Brain , Interferon Type I , Microglia , Animals , Mice , Interferon Type I/metabolism , Microglia/metabolism , Neurons/metabolism , Zebrafish , Brain/cytology , Brain/growth & development
2.
Biol Psychiatry Glob Open Sci ; 3(3): 451-459, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519458

ABSTRACT

Background: Tuberous sclerosis complex is a genetic disorder associated with high rates of intellectual disability and autism. Mice with a heterozygous null mutation of the Tsc2 gene (Tsc2+/-) show deficits in hippocampal-dependent tasks and abnormal long-term potentiation (LTP) in the hippocampal CA1 region. Although previous studies focused on the role of neuronal deficits in the memory phenotypes of rodent models of tuberous sclerosis complex, the results presented here demonstrate a role for microglia in these deficits. Methods: To test the possible role of microglia and type I interferon in abnormal hippocampal-dependent memory and LTP of Tsc2+/- mice, we used field recordings in CA1 and the object place recognition (OPR) task. We used the colony stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in Tsc2+/- mice and interferon alpha/beta receptor alpha chain null mutation (Ifnar1-/-) to manipulate a signaling pathway known to modulate microglia function. Results: Unexpectedly, we demonstrate that male, but not female, Tsc2+/- mice show OPR deficits. These deficits can be rescued by depletion of microglia and by the Ifnar1-/- mutation. In addition to rescuing OPR deficits, depletion of microglia also reversed abnormal LTP of the Tsc2+/- mice. Altogether, our results suggest that altered IFNAR1 signaling in microglia causes the abnormal LTP and OPR deficits of male Tsc2+/- mice. Conclusions: Microglia and IFNAR1 signaling have a key role in the hippocampal-dependent memory deficits and abnormal hippocampal LTP of Tsc2+/- male mice.

3.
bioRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993292

ABSTRACT

The innate immune system plays essential roles in brain synaptic development, and immune dysregulation is implicated in neurodevelopmental diseases. Here we show that a subset of innate lymphocytes (group 2 innate lymphoid cells, ILC2s) is required for cortical inhibitory synapse maturation and adult social behavior. ILC2s expanded in the developing meninges and produced a surge of their canonical cytokine Interleukin-13 (IL-13) between postnatal days 5-15. Loss of ILC2s decreased cortical inhibitory synapse numbers in the postnatal period where as ILC2 transplant was sufficient to increase inhibitory synapse numbers. Deletion of the IL-4/IL-13 receptor (Il4ra) from inhibitory neurons phenocopied the reduction inhibitory synapses. Both ILC2 deficient and neuronal Il4ra deficient animals had similar and selective impairments in adult social behavior. These data define a type 2 immune circuit in early life that shapes adult brain function.

4.
bioRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-35233577

ABSTRACT

Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.

5.
Sci Adv ; 7(38): eabf2073, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533985

ABSTRACT

There is growing evidence that prenatal immune activation contributes to neuropsychiatric disorders. Here, we show that early postnatal immune activation resulted in profound impairments in social behavior, including in social memory in adult male mice heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/−), a genetic disorder with high prevalence of autism. Early postnatal immune activation did not affect either wild-type or female Tsc2+/− mice. We demonstrate that these memory deficits are caused by abnormal mammalian target of rapamycin­dependent interferon signaling and impairments in microglia function. By mining the medical records of more than 3 million children followed from birth, we show that the prevalence of hospitalizations due to infections in males (but not in females) is associated with future development of autism spectrum disorders (ASD). Together, our results suggest the importance of synergistic interactions between strong early postnatal immune activation and mutations associated with ASD.

6.
Cell ; 182(2): 388-403.e15, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32615087

ABSTRACT

Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.


Subject(s)
Extracellular Matrix/metabolism , Microglia/physiology , Neuronal Plasticity/physiology , Aging , Animals , Fear , Gene Expression Regulation , Hippocampus/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...