Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 330: 121786, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368093

ABSTRACT

Copper bionanocomposites (CBNCS) were synthesized using Ipomoea carnea- sourced nanocellulose as support via an eco-friendly and cost-effective method. X-ray Diffractometer (XRD) pattern of CBNCS confirmed the octahedral structure of Cu2O, the face-centered cubic (FCC) crystal structure of Cu(0). XRD also revealed the crystal lattice of cellulose II. Surface Electron Microscope (SEM) and Transmission Electron Microscope (TEM) revealed the uniform distribution of copper nanoparticles (Cu NPs) with an average size of 10 nm due to the presence of nanocellulose. X-ray photoelectron spectroscopy (XPS) provided information about the electronic, chemical state and elemental composition of CBNCS. Thermogravimetric Analysis (TGA) showed the thermal stability of CBNCS. CBNCS catalyzed the rearrangement of oximes to primary amides in a very mild condition with a high yield of up to 92 %. CBNCS effectively inhibited the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with lower minimum inhibitory concentration MIC values. Antioxidant activity and electrical conductivity of CBNCS were also determined.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Copper/chemistry , Staphylococcus aureus , Metal Nanoparticles/chemistry , Escherichia coli , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared
2.
Environ Monit Assess ; 195(9): 1044, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589779

ABSTRACT

Ash collected from thrown-away by-products while preparing a popular traditional food additive, kolakhar of the Assamese community of North East, India, was used as an alternate cost-effective, porous bioadsorbent option from the conventional activated carbon for the purification of carcinogenic dyes laden water. The base material for kolakhar preparation was taken from the discarded banana stem waste to stimulate agricultural waste management. Methylene blue (MB) and basic fuchsin (BF) dyes were used as model cationic dyes. Characterization techniques like CHN, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX), and Brunauer-Emmett-Teller (BET) analysis of the prepared banana stem ash (BSA) reveal the presence of high inorganic contents and functional groups in the irregular, porous bioadsorbent with surface area 55.534 m2 g-1. Various regulating parameters studied to optimize the adsorption capacity of BSA were bioadsorbent dose (0.1-3 g/L), temperature (298-318 K), contact time (0-150 min), pH (2-9), and initial dye concentrations (10-40 mg/L). Non-linear kinetic models suggested Elovich for both MB and BF adsorption, while the non-linear isotherm model suggested Langmuir and Temkin for MB and BF adsorption, respectively, as best-fitted curves. The monolayer adsorption capacity (qm) for MB and BF was 15.22 mg/g and 24.08 mg/g at 318 K, respectively, with more than 95% removal efficiency for both dyes. The thermodynamic parameters studied indicated that the adsorption is spontaneous. The ∆H0 values of MB and BF adsorptions were 2.303 kJ/mol (endothermic) and - 29.238 kJ/mol (exothermic), respectively.


Subject(s)
Coloring Agents , Environmental Monitoring , Rosaniline Dyes , Adsorption , Agriculture , Cations , Methylene Blue
SELECTION OF CITATIONS
SEARCH DETAIL
...