Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(9): e2307067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095537

ABSTRACT

Pressure-induced swelling has been reported earlier for several hydrophilic layered materials. MXene Ti3C2Tx is also a hydrophilic layered material composed by 2D sheets but so far pressure-induced swelling is reported for this material only under conditions of shear stress at MPa pressures. Here, high-pressure experiments are performed with MXenes prepared by two methods known to provide "clay-like" materials. MXene synthesized by etching MAX phase with HCl+LiF demonstrates the effect of pressure-induced swelling at 0.2 GPa with the insertion of additional water layer. The transition is incomplete with two swollen phases (ambient with d(001) = 16.7Å and pressure-induced with d(001) = 19.2Å at 0.2 GPa) co-existing up to the pressure point of water solidification. Therefore, the swelling transition corresponds to change from two-layer water intercalation (2L-phase) to a never previously observed three-layer water intercalation (3L-phase) of MXene. Experiments with MXene prepared by LiCl+HF etching have not revealed pressure-induced swelling in liquid water. Both MXenes also show no anomalous compressibility in liquid methanol. The presence of pressure-induced swelling only in one of the MXenes indicates that the HCl+LiF synthesis method is likely to result in higher abundance of hydrophilic functional groups terminating 2D titanium carbide.

2.
J Hazard Mater ; 457: 131817, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37327606

ABSTRACT

Porous carbons are not favorable for sorption of heavy metals and radionuclides due to absence of suitable binding sites. In this study we explored the limits for surface oxidation of "activated graphene" (AG), porous carbon material with the specific surface area of ∼2700 m2/g produced by activation of reduced graphene oxide (GO). Set of "Super-Oxidized Activated Graphene" (SOAG) materials with high abundance of carboxylic groups on the surface were produced using "soft" oxidation. High degree of oxidation comparable to standard GO (C/O=2.3) was achieved while keeping 3D porous structure with specific surface area of ∼700-800 m2/. The decrease in surface area is related to the oxidation-driven collapse of mesopores while micropores showed higher stability. The increase in the oxidation degree of SOAG is found to result in progressively higher sorption of U(VI), mostly related to the increase in abundance of carboxylic groups. The SOAG demonstrated extraordinarily high sorption of U(VI) with the maximal capacity up to 5400 µmol/g, that is 8.4 - fold increase compared to non-oxidized precursor AG, ∼50 -fold increase compared to standard graphene oxide and twice higher than extremely defect-rich graphene oxide. The trends revealed here show a way to further increase sorption if similar oxidation degree is achieved with smaller sacrifice of surface area.

3.
RSC Adv ; 13(21): 14543-14553, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37188252

ABSTRACT

Activated carbons have been previously produced from a huge variety of biomaterials often reporting advantages of using certain precursors. Here we used pine cones, spruce cones, larch cones and a pine bark/wood chip mixture to produce activated carbons in order to verify the influence of the precursor on properties of the final materials. The biochars were converted into activated carbons with extremely high BET surface area up to ∼3500 m2 g-1 (among the highest reported) using identical carbonization and KOH activation procedures. The activated carbons produced from all precursors demonstrated similar specific surface area (SSA), pore size distribution and performance to electrodes in supercapacitors. Activated carbons produced from wood waste appeared to be also very similar to "activated graphene" prepared by the same KOH procedure. Hydrogen sorption of AC follows expected uptake vs. SSA trends and energy storage parameters of supercapacitor electrodes prepared from AC are very similar for all tested precursors. It can be concluded that the type of precursor (biomaterial or reduced graphene oxide) has smaller importance for producing high surface area activated carbons compared to details of carbonization and activation. Nearly all kinds of wood waste provided by the forest industry can possibly be converted into high quality AC suitable for preparation of electrode materials.

4.
Nanoscale Adv ; 4(21): 4689-4700, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341297

ABSTRACT

High surface area carbons are so far the best materials for industrial manufacturing of supercapacitor electrodes. Here we demonstrate that pine cones, an abundant bio-precursor currently considered as a waste in the wood industry, can be used to prepare activated carbons with a BET surface area exceeding 3000 m2 g-1. It is found that the same KOH activation procedure applied to reduced graphene oxide (rGO) and pine cone derived biochars results in carbon materials with a similar surface area, pore size distribution and performance in supercapacitor (SC) electrodes. It can be argued that "activated graphene" and activated carbon are essentially the same kind of material with a porous 3D structure. It is demonstrated that the pine cone derived activated carbon (PC-AC) can be used as a main part of aqueous dispersions stabilized by graphene oxide for spray deposition of electrodes. The PC-AC based electrodes prepared using a semi-industrial spray gun machine and laboratory scale blade deposition of these dispersions were compared to pellet electrodes.

5.
Nanoscale ; 14(30): 10940-10949, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35856786

ABSTRACT

Swelling is a property of hydrophilic layered materials, which enables the penetration of polar solvents into an interlayer space with expansion of the lattice. Here we report an irreversible swelling transition, which occurs in MXenes immersed in excess dimethyl sulfoxide (DMSO) upon heating at 362-370 K with an increase in the interlayer distance by 4.2 Å. The temperature dependence of MXene Ti3C2Tx swelling in several polar solvents was studied using synchrotron radiation X-ray diffraction. MXenes immersed in excess DMSO showed a step-like increase in the interlayer distance from 17.73 Å at 280 K to 22.34 Å above ∼362 K. The phase transformation corresponds to a transition from the MXene structure with one intercalated DMSO layer into a two-layer solvate phase. The transformation is irreversible and the expanded phase remains after cooling back to room temperature. A similar phase transformation was observed also for MXene immersed in a 2 : 1 H2O : DMSO solvent ratio but at a lower temperature. The structure of MXene in the mixed solvent below 328 K was affected by the interstratification of differently hydrated (H2O)/solvated (DMSO) layers. Above the temperature of the transformation, the water was expelled from MXene interlayers and the formation of a pure two-layer DMSO-MXene phase was found. No changes in the swelling state were observed for MXenes immersed in DMSO or methanol at temperatures below ambient down to 173 K. Notably, MXenes do not swell in 1-alcohols larger than ethanol at ambient temperature. Changing the interlayer distance of MXenes by simple temperature cycling can be useful in membrane applications, e.g. when a larger interlayer distance is required for the penetration of ions and molecules into membranes. Swelling is also very important in electrode materials since it allows penetration of the electrolyte ions into the interlayers of the MXene structure.

7.
J Phys Chem C Nanomater Interfaces ; 125(12): 6877-6885, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33868545

ABSTRACT

Intercalation of dyes into thin multilayered graphene oxide (GO) films was studied by neutron reflectivity and X-ray diffraction. Methylene blue (MB) penetrates the interlayer space of GO in ethanol solution and remains intercalated after the solvent evaporation, as revealed by the expansion of the interlayer lattice and change in chemical composition. The sorption of MB by thin GO films is found to be significantly stronger compared to the sorption of Crystal violet (CV) and Rose bengal (RB). This effect is attributed to the difference in the geometrical shape of planar MB and essentially nonflat CV and RB molecules. Graphite oxides and restacked GO films are found to exhibit different methylene blue (MB) sorptions. MB sorption by precursor graphite oxide and thin spin-coated films of GO is significantly stronger compared to freestanding micrometer-thick membranes prepared by vacuum filtration. Nevertheless, the sorption capacity of GO membranes is sufficient to remove a significant part of the MB from diluted solutions tested for permeation in several earlier studies. High sorption capacity results in strong modification of the GO structure, which is likely to affect permeation properties of GO membranes. Therefore, MB is not suitable for testing size exclusion effects in the permeation of GO membranes. It is not only hydration or solvation diameter but also the exact geometrical shape of molecules that needs to be taken into account considering size effects for penetration of molecules between GO layers in membrane applications.

8.
Small ; 17(17): e2007242, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33719216

ABSTRACT

Lithium-sulfur (Li-S) batteries are considered one of the most promising energy storage technologies, possibly replacing the state-of-the-art lithium-ion (Li-ion) batteries owing to their high energy density, low cost, and eco-compatibility. However, the migration of high-order lithium polysulfides (LiPs) to the lithium surface and the sluggish electrochemical kinetics pose challenges to their commercialization. The interactions between the cathode and LiPs can be enhanced by the doping of the carbon host with heteroatoms, however with relatively low doping content (<10%) in the bulk of the carbon, which can hardly interact with LiPs at the host surface. In this study, the grafting of versatile functional groups with designable properties (e.g., catalytic effects) directly on the surface of the carbon host is proposed to enhance interactions with LiPs. As model systems, benzene groups containing N/O and S/O atoms are vertically grafted and uniformly distributed on the surface of expanded reduced graphene oxide, fostering a stable interface between the cathode and LiPs. The combination of experiments and density functional theory calculations demonstrate improvements in chemical interactions between graphene and LiPs, with an enhancement in the electrochemical kinetics, power, and energy densities.

9.
Nanoscale ; 12(41): 21060-21093, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33084722

ABSTRACT

Graphite oxide (GtO) and graphene oxide (GO) multilayered laminates are hydrophilic materials easily intercalated by water and other polar solvents. By definition, an increase in the volume of a material connected to the uptake of a liquid or vapour is named swelling. Swelling is a property which defines graphite oxides and graphene oxides. Less oxidized materials not capable of swelling should be named oxidized graphene. The infinite swelling of graphite oxide yields graphene oxide in aqueous dispersions. Graphene oxide sheets dispersed in a polar solvent can be re-assembled into multilayered structures and named depending on applications as films, papers or membranes. The multilayered GO materials exhibit swelling properties which are mostly similar to those of graphite oxides but not identical and in some cases surprisingly different. Swelling is a key property of GO materials in all applications which involve the sorption of water/solvents from vapours, immersion of GO into liquid water/solvents and solution based chemical reactions. These applications include sensors, sorption/removal of pollutants from waste waters, separation of liquid and gas mixtures, nanofiltration, water desalination, water-permeable protective coatings, etc. Swelling defines the distance between graphene oxide sheets in solution-immersed GO materials and the possibility for penetration of ions and molecules inside of interlayers. A high sorption capacity of GO towards many molecules and cations is defined by swelling which makes the very high surface area of GO accessible. GtO and GO swelling is a surprisingly complex phenomenon which is manifested in a variety of different ways. Swelling is strongly different for materials produced using the most common Brodie and Hummers oxidation procedures; it depends on the degree of oxidation, ad temperature and pressure conditions. The value of the GO interlayer distance is especially important in membrane applications. Diffusion of solvent molecules and ions is defined by the size of "permeation channels" provided by the swelled GO structure. According to extensive studies performed over the last decade the exact value of the inter-layer distance in swelled GO depends on the nature of solvent, temperature and pressure conditions, and the pH and concentration of solutions and exhibits pronounced aging effects. This review provides insight into the fundamental swelling properties of multilayered GO and demonstrates links to advanced applications of these materials.

10.
ACS Appl Mater Interfaces ; 12(40): 45122-45135, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32902246

ABSTRACT

Extremely defect graphene oxide (dGO) is proposed as an advanced sorbent for treatment of radioactive waste and contaminated natural waters. dGO prepared using a modified Hummers oxidation procedure, starting from reduced graphene oxide (rGO) as a precursor, shows significantly higher sorption of U(VI), Am(III), and Eu(III) than standard graphene oxides (GOs). Earlier studies revealed the mechanism of radionuclide sorption related to defects in GO sheets. Therefore, explosive thermal exfoliation of graphite oxide was used to prepare rGO with a large number of defects and holes. Defects and holes are additionally introduced by Hummers oxidation of rGO, thus providing an extremely defect-rich material. Analysis of characterization by XPS, TGA, and FTIR shows that dGO oxygen functionalization is predominantly related to defects, such as flake edges and edge atoms of holes, whereas standard GO exhibits oxygen functional groups mostly on the planar surface. The high abundance of defects in dGO results in a 15-fold increase in sorption capacity of U(VI) compared to that in standard Hummers GO. The improved sorption capacity of dGO is related to abundant carboxylic group attached hole edge atoms of GO flakes as revealed by synchrotron-based extended X-ray absorption fine structure (EXAFS) and high-energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) spectroscopy.

11.
RSC Adv ; 10(12): 6831-6839, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-35493864

ABSTRACT

Graphene oxide (GO) pillared with tetrakis(4-aminophenyl)methane (TKAM) molecules shows a narrow distribution of pore size, relatively high specific surface area, but it is hydrophilic and electrically not conductive. Analysis of XRD, N2 sorption, XPS, TGA and FTIR data proved that the pillared structure and relatively high surface area (∼350 m2 g-1) are preserved even after thermal reduction of GO pillared with TKAM molecules. Unlike many other organic pillaring molecules, TKAM is stable at temperatures above the point of GO thermal reduction, as demonstrated by TGA. Therefore, gentle annealing results in the formation of reduced graphene oxide (rGO) pillared with TKAM molecules. The TKAM pillared reduced graphene oxide (PrGO/TKAM) is less hydrophilic as found using dynamic vapor sorption (DVS) and more electrically conductive compared to pillared GO, but preserves an increased interlayer-distance of about 12 Å (compared to ∼7.5 Å in pristine GO). Thus we provide one of the first examples of porous rGO pillared with organic molecules and well-defined size of hydrophobic slit pores. Analysis of pore size distribution using nitrogen sorption isotherms demonstrates a single peak for pore size of ∼7 Å, which makes PrGO/TKAM rather promising for membrane and molecular sieve applications.

12.
Angew Chem Int Ed Engl ; 59(3): 1087-1092, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31553513

ABSTRACT

COF-1 has a structure with rigid 2D layers composed of benzene and B3 O3 rings and weak van der Waals bonding between the layers. The as-synthesized COF-1 structure contains pores occupied by solvent molecules. A high surface area empty-pore structure is obtained after vacuum annealing. High-pressure XRD and Raman experiments with mesitylene-filled (COF-1-M) and empty-pore COF-1 demonstrate partial amorphization and collapse of the framework structure above 12-15 GPa. The ambient pressure structure of COF-1-M can be reversibly recovered after compression up to 10-15 GPa. Remarkable stability of highly porous COF-1 structure at pressures at least up to 10 GPa is found even for the empty-pore structure. The bulk modulus of the COF-1 structure (11.2(5) GPa) and linear incompressibilities (k[100] =111(5) GPa, k[001] =15.0(5) GPa) were evaluated from the analysis of XRD data and cross-checked against first-principles calculations.

13.
Nanoscale ; 10(45): 21386-21395, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30427042

ABSTRACT

The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of ∼8.9 Å and the two-layer solvate (∼12.5 Å) at low temperature, thus providing slit pores of approximately 2.5 and 6 Å. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 Å slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of ∼15-16.6 Å, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 Å). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of ∼10 Å.

14.
Angew Chem Int Ed Engl ; 57(4): 1034-1038, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29210484

ABSTRACT

Hybrid 2D-2D materials composed of perpendicularly oriented covalent organic frameworks (COFs) and graphene were prepared and tested for energy storage applications. Diboronic acid molecules covalently attached to graphene oxide (GO) were used as nucleation sites for directing vertical growth of COF-1 nanosheets (v-COF-GO). The hybrid material has a forest of COF-1 nanosheets with a thickness of 3 to 15 nm in edge-on orientation relative to GO. The reaction performed without molecular pillars resulted in uncontrollable growth of thick COF-1 platelets parallel to the surface of GO. The v-COF-GO was converted into a conductive carbon material preserving the nanostructure of precursor with ultrathin porous carbon nanosheets grafted to graphene in edge-on orientation. It was demonstrated as a high-performance electrode material for supercapacitors. The molecular pillar approach can be used for preparation of many other 2D-2D materials with control of their relative orientation.

16.
Nanoscale ; 9(20): 6929-6936, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28509924

ABSTRACT

Multilayered intercalation of 1-octanol into the structure of Brodie graphite oxide (B-GO) was studied as a function of temperature and pressure. Reversible phase transition with the addition/removal of one layer of 1-octanol was found at 265 K by means of X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The same transition was observed at ambient temperature upon a pressure increase above 0.6 GPa. This transition was interpreted as an incongruent melting of the low temperature/high pressure B-GO intercalated structure with five layers of 1-octanol parallel to GO sheets (L-solvate), resulting in the formation of a four-layered structure that is stable under ambient conditions (A-solvate). Vacuum heating allows the removal of 1-octanol from the A-solvate layer by layer, while distinct sets of (00l) reflections are observed for three-, two-, and one-layered solvate phases. Step by step removal of the 1-octanol layers results in changes of distance between graphene oxide planes by ∼4.5 Å. This experiment proved that both L- and A-solvates are structures with layers of 1-octanol parallel to GO planes. Unusual intercalation with up to five distinct layers of 1-octanol is remarkably different from the behaviour of small alcohol molecules (methanol and ethanol), which intercalate B-GO structure with only one layer under ambient conditions and a maximum of two layers at lower temperatures or higher pressures. The data presented in this study make it possible to rule out a change in the orientation of alcohol molecules from parallel to perpendicular to the GO planes, as suggested in the 1960s to explain larger expansion of the GO lattice due to swelling with larger alcohols.

18.
Nanoscale ; 7(37): 15374-84, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26332400

ABSTRACT

The change of distance between individual graphene oxide sheets due to swelling is the key parameter to explain and predict permeation of multilayered graphene oxide (GO) membranes by various solvents and solutions. In situ synchrotron X-ray diffraction study shows that swelling properties of GO membranes are distinctly different compared to precursor graphite oxide powder samples. Intercalation of liquid dioxolane, acetonitrile, acetone, and chloroform into the GO membrane structure occurs with maximum one monolayer insertion (Type I), in contrast with insertion of 2-3 layers of these solvents into the graphite oxide structure. However, the structure of GO membranes expands in liquid DMSO and DMF solvents similarly to precursor graphite oxide (Type II). It can be expected that Type II solvents will permeate GO membranes significantly faster compared to Type I solvents. The membranes are found to be stable in aqueous solutions of acidic and neutral salts, but dissolve slowly in some basic solutions of certain concentrations, e.g. in NaOH, NaHCO3 and LiF. Some larger organic molecules, alkylamines and alkylammonium cations are found to intercalate and expand the lattice of GO membranes significantly, e.g. up to ∼35 Šin octadecylamine/methanol solution. Intercalation of solutes into the GO structure is one of the limiting factors for nano-filtration of certain molecules but it also allows modification of the inter-layer distance of GO membranes and tuning of their permeation properties. For example, GO membranes functionalized with alkylammonium cations are hydrophobized and they swell in non-polar solvents.

19.
Chem Commun (Camb) ; 51(83): 15280-3, 2015 Oct 25.
Article in English | MEDLINE | ID: mdl-26335949

ABSTRACT

Using an optimized KOH activation procedure we prepared highly porous graphene scaffold materials with SSA values up to 3400 m(2) g(-1) and a pore volume up to 2.2 cm(3) g(-1), which are among the highest for carbon materials. Hydrogen uptake of activated graphene samples was evaluated in a broad temperature interval (77-296 K). After additional activation by hydrogen annealing the maximal excess H2 uptake of 7.5 wt% was obtained at 77 K. A hydrogen storage value as high as 4 wt% was observed already at 193 K (120 bar H2), a temperature of solid CO2, which can be easily maintained using common industrial refrigeration methods.

20.
Nanoscale ; 7(29): 12625-30, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26147576

ABSTRACT

Graphite oxide (GO) in liquid acetonitrile undergoes a transition from an ordered phase around ambient temperature to a gel-like disordered phase at temperatures below 260 K, as demonstrated by in situ X-ray diffraction. The stacking order of GO layers is restored below the freezing point of acetonitrile (199 K). The reversible swelling transition between a stacked crystalline phase and an amorphous delaminated state observed upon cooling provides an unusual example of increased structural disorder at lower temperatures. The formation of the gel-like phase is attributed to the thermo-responsive conformational change of individual GO flakes induced by stronger solvation. Scanning force microscopy demonstrates that GO flakes deposited onto a solid substrate from acetonitrile dispersions at a temperature below 260 K exhibit corrugations and wrinkling which are not observed for the flakes deposited at ambient temperature. The thermo-responsive transition between the delaminated and stacked phases reported here can be used for sonication-free dispersion of graphene oxide, micro-container applications, or the preparation of new composite materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...