Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Cancer Immunol Res ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701369

ABSTRACT

Glutamine metabolism in tumor microenvironments critically regulates anti-tumor immunity. Using glutamine-antagonist prodrug JHU083, we report potent tumor growth inhibition in urologic tumors by JHU083-reprogrammed tumor-associated macrophages (TAMs) and tumor-infiltrating monocytes (TIMs). We show JHU083-mediated glutamine antagonism in tumor microenvironments induces TNF, pro-inflammatory, and mTORC1 signaling in intratumoral TAM clusters. JHU083-reprogrammed TAMs also exhibit increased tumor cell phagocytosis and diminished pro-angiogenic capacities. In vivo inhibition of TAM glutamine consumption resulted in increased glycolysis, a broken TCA cycle, and purine metabolism disruption. Although the anti-tumor effect of glutamine antagonism on tumor-infiltrating T cells was moderate, JHU083 promoted a stem cell-like phenotype in CD8+ T cells and decreased Treg abundance. Finally, JHU083 caused a ubiquitous shutdown in glutamine utilizing metabolic pathways in tumor cells, leading to reduced HIF-1alpha, c-MYC phosphorylation, and induction of tumor cell apoptosis, all key anti-tumor features.

2.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352414

ABSTRACT

The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.

3.
Adv Mater ; : e2310476, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087458

ABSTRACT

Aging is associated with immunological changes that compromise response to infections and vaccines, exacerbate inflammatory diseases and can potentially mitigate tissue repair. Even so, age-related changes to the immune response to tissue damage and regenerative medicine therapies remain unknown. Here, it is characterized how aging induces changes in immunological signatures that inhibit tissue repair and therapeutic response to a clinical regenerative biological scaffold derived from extracellular matrix. Signatures of inflammation and interleukin (IL)-17 signaling increased with injury and treatment both locally and regionally in aged animals, and computational analysis uncovered age-associated senescent-T cell communication that promotes type 3 immunity in T cells. Local inhibition of type 3 immune activation using IL17-neutralizing antibodies improves healing and restores therapeutic response to the regenerative biomaterial, promoting muscle repair in older animals. These results provide insights into tissue immune dysregulation that occurs with aging that can be targeted to rejuvenate repair.

4.
Sci Immunol ; 8(87): eadg1487, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713507

ABSTRACT

Regulatory T cells (Treg) are conventionally viewed as suppressors of endogenous and therapy-induced antitumor immunity; however, their role in modulating responses to immune checkpoint blockade (ICB) is unclear. In this study, we integrated single-cell RNA-seq/T cell receptor sequencing (TCRseq) of >73,000 tumor-infiltrating Treg (TIL-Treg) from anti-PD-1-treated and treatment-naive non-small cell lung cancers (NSCLC) with single-cell analysis of tumor-associated antigen (TAA)-specific Treg derived from a murine tumor model. We identified 10 subsets of human TIL-Treg, most of which have high concordance with murine TIL-Treg subsets. Only one subset selectively expresses high levels of TNFRSF4 (OX40) and TNFRSF18 (GITR), whose engangement by cognate ligand mediated proliferative programs and NF-κB activation, as well as multiple genes involved in Treg suppression, including LAG3. Functionally, the OX40hiGITRhi subset is the most highly suppressive ex vivo, and its higher representation among total TIL-Treg correlated with resistance to PD-1 blockade. Unexpectedly, in the murine tumor model, we found that virtually all TIL-Treg-expressing T cell receptors that are specific for TAA fully develop a distinct TH1-like signature over a 2-week period after entry into the tumor, down-regulating FoxP3 and up-regulating expression of TBX21 (Tbet), IFNG, and certain proinflammatory granzymes. Transfer learning of a gene score from the murine TAA-specific TH1-like Treg subset to the human single-cell dataset revealed a highly analogous subcluster that was enriched in anti-PD-1-responding tumors. These findings demonstrate that TIL-Treg partition into multiple distinct transcriptionally defined subsets with potentially opposing effects on ICB-induced antitumor immunity and suggest that TAA-specific TIL-Treg may positively contribute to antitumor responses.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/genetics , Granzymes , Signal Transduction , Single-Cell Analysis
5.
Geroscience ; 45(4): 2559-2587, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37079217

ABSTRACT

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFßR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.


Subject(s)
Aging , Cellular Senescence , Humans , Mice , Animals , Cellular Senescence/genetics , Aging/genetics , Phenotype , Fibroblasts , Machine Learning
7.
J Immunol ; 209(12): 2287-2291, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36469844

ABSTRACT

The mechanistic target of rapamycin is an essential regulator of T cell metabolism and differentiation. In this study, we demonstrate that serum- and glucocorticoid-regulated kinase 1 (SGK1), a downstream node of mechanistic target of rapamycin complex 2 signaling, represses memory CD8+ T cell differentiation. During acute infections, murine SGK1-deficient CD8+ T cells adopt an early memory precursor phenotype leading to more long-lived memory T cells. Thus, SGK1-deficient CD8+ T cells demonstrate an enhanced recall capacity in response to reinfection and can readily reject tumors. Mechanistically, activation of SGK1-deficient CD8+ T cells results in decreased Foxo1 phosphorylation and increased nuclear translocation of Foxo1 to promote early memory development. Overall, SGK1 might prove to be a powerful target for enhancing the efficacy of vaccines and tumor immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Mechanistic Target of Rapamycin Complex 2 , Memory T Cells , Protein Serine-Threonine Kinases , Animals , Mice , Cell Differentiation , Immunologic Memory/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Multiprotein Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , Sirolimus , TOR Serine-Threonine Kinases/metabolism
8.
Eur Rev Aging Phys Act ; 19(1): 19, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002799

ABSTRACT

INTRODUCTION: Cognitive frailty is the co-existence of mild cognitive impairment and physical frailty that increases the risk of adverse health outcomes. The existing systematic reviews on cognitive frailty in the literature have focused only on identifying associated factors and adverse outcomes, and their relationship with frailty and cognition. This study aimed to examine the effects of interventions on cognitive functions, frailty, and physical functions and provide an overview of intervention components used in older people with cognitive frailty. METHODS: This is a systematic review and meta-analysis. Medline, PubMed, CINAHL, Embase, PsycINFO, and Cochrane were searched for publishing during 2013-2021. Studies were selected based on the following eligibility criteria: 1) older people (age ≥ 60 years), 2) cognitive frailty, 3) outcomes on frailty or cognition or physical function, and 4) randomized controlled trial with any type of intervention. The Physiotherapy Evidence Database (PEDro) scale was used to rate the quality of the included studies. The review protocol was registered with PROSPERO (CRD42021251321). RESULTS: Two thousand five hundred six studies were identified, 9 were eligible, and 8 were included in the meta-analysis. The standardized mean difference (Hedges G) between groups of cognitive functions was 0.95, frailty status was 0, physical function in walking was -1.67, and the physical function in core strength assessment was 3.39. Physical activity appeared as an essential component in all interventions for older people with cognitive frailty. DISCUSSION: All interventions include physical activity as one of the components. Other components include cognitive training, nutrition education, behavioural intervention, mind-body intervention, psychosocial support, and virtual reality. The interventions are effective to promote cognitive and physical functions, but not physical frailty.

9.
Cancer Discov ; 12(8): 1873-1885, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35678528

ABSTRACT

Defining the complex role of the microbiome in colorectal cancer and the discovery of novel, protumorigenic microbes are areas of active investigation. In the present study, culturing and reassociation experiments revealed that toxigenic strains of Clostridioides difficile drove the tumorigenic phenotype of a subset of colorectal cancer patient-derived mucosal slurries in germ-free ApcMin/+ mice. Tumorigenesis was dependent on the C. difficile toxin TcdB and was associated with induction of Wnt signaling, reactive oxygen species, and protumorigenic mucosal immune responses marked by the infiltration of activated myeloid cells and IL17-producing lymphoid and innate lymphoid cell subsets. These findings suggest that chronic colonization with toxigenic C. difficile is a potential driver of colorectal cancer in patients. SIGNIFICANCE: Colorectal cancer is a leading cause of cancer and cancer-related deaths worldwide, with a multifactorial etiology that likely includes procarcinogenic bacteria. Using human colon cancer specimens, culturing, and murine models, we demonstrate that chronic infection with the enteric pathogen C. difficile is a previously unrecognized contributor to colonic tumorigenesis. See related commentary by Jain and Dudeja, p. 1838. This article is highlighted in the In This Issue feature, p. 1825.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Colonic Neoplasms , Colorectal Neoplasms , Animals , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Carcinogenesis , Clostridioides , Humans , Immunity, Innate , Lymphocytes/metabolism , Mice
10.
Cancer Immunol Immunother ; 71(10): 2405-2420, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35217892

ABSTRACT

Human gut microbial species found to associate with clinical responses to immune checkpoint inhibitors (ICIs) are often tested in mice using fecal microbiota transfer (FMT), wherein tumor responses in recipient mice may recapitulate human responses to ICI treatment. However, many FMT studies have reported only limited methodological description, details of murine cohorts, and statistical methods. To investigate the reproducibility and robustness of gut microbial species that impact ICI responses, we performed human to germ-free mouse FMT using fecal samples from patients with non-small cell lung cancer who had a pathological response or nonresponse after neoadjuvant ICI treatment. R-FMT mice yielded greater anti-tumor responses in combination with anti-PD-L1 treatment compared to NR-FMT, although the magnitude varied depending on mouse cell line, sex, and individual experiment. Detailed investigation of post-FMT mouse microbiota using 16S rRNA amplicon sequencing, with models to classify and correct for biological variables, revealed a shared presence of the most highly abundant taxa between the human inocula and mice, though low abundance human taxa colonized mice more variably after FMT. Multiple Clostridium species also correlated with tumor outcome in individual anti-PD-L1-treated R-FMT mice. RNAseq analysis revealed differential expression of T and NK cell-related pathways in responding tumors, irrespective of FMT source, with enrichment of these cell types confirmed by immunohistochemistry. This study identifies several human gut microbial species that may play a role in clinical responses to ICIs and suggests attention to biological variables is needed to improve reproducibility and limit variability across experimental murine cohorts.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Fecal Microbiota Transplantation , Humans , Mice , Neoadjuvant Therapy , RNA, Ribosomal, 16S/genetics , Reproducibility of Results
11.
NPJ Regen Med ; 7(1): 6, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35031598

ABSTRACT

Soft tissue reconstruction remains an intractable clinical challenge as current surgical options and synthetic implants may produce inadequate outcomes. Soft tissue deficits may be surgically reconstructed using autologous adipose tissue, but these procedures can lead to donor site morbidity, require multiple procedures, and have highly variable outcomes. To address this clinical need, we developed an "off-the-shelf" adipose extracellular matrix (ECM) biomaterial from allograft human tissue (Acellular Adipose Tissue, AAT). We applied physical and chemical processing methods to remove lipids and create an injectable matrix that mimicked the properties of lipoaspirate. Biological activity was assessed using cell migration and adipogenesis assays. Characterization of regenerative immune properties in a murine muscle injury model revealed that allograft and xenograft AAT induced pro-regenerative CD4+ T cells and macrophages with xenograft AAT additionally attracting eosinophils secreting interleukin 4 (Il4). In immunocompromised mice, AAT injections retained similar volumes as human fat grafts but lacked cysts and calcifications seen in the fat grafts. The combination of AAT with human adipose-derived stem cells (ASCs) resulted in lower implant volumes. However, tissue remodeling and adipogenesis increased significantly in combination with ASCs. Larger injected volumes of porcine-derived AAT demonstrated biocompatibility and greater retention when applied allogeneicly in Yorkshire cross pigs. AAT was implanted in healthy volunteers in abdominal tissue that was later removed by elective procedures. AAT implants were well tolerated in all human subjects. Implants removed between 1 and 18 weeks demonstrated increasing cellular infiltration and immune populations, suggesting continued tissue remodeling and the potential for long-term tissue replacement.

12.
J Immunother Cancer ; 9(12)2021 12.
Article in English | MEDLINE | ID: mdl-34896980

ABSTRACT

BACKGROUND: The prognosis of patients with recurrent/refractory acute myelogenous leukemia (AML) remains poor and cell-based immunotherapies hold promise to improve outcomes. Natural Killer (NK) cells can elicit an antileukemic response via a repertoire of activating receptors that bind AML surface ligands. NK-cell adoptive transfer is safe but thus far has shown limited anti-AML efficacy. Here, we aimed to overcome this limitation by engineering NK cells to express chimeric antigen receptors (CARs) to boost their anti-AML activity and interleukin (IL)-15 to enhance their persistence. METHODS: We characterized in detail NK-cell populations expressing a panel of AML (CD123)-specific CARs and/or IL-15 in vitro and in AML xenograft models. RESULTS: CARs with 2B4.ζ or 4-1BB.ζ signaling domains demonstrated greater cell surface expression and endowed NK cells with improved anti-AML activity in vitro. Initial in vivo testing revealed that only 2B4.ζ Chimeric Antigen Receptor (CAR)-NK cells had improved anti-AML activity in comparison to untransduced (UTD) and 4-1BB.ζ CAR-NK cells. However, the benefit was transient due to limited CAR-NK-cell persistence. Transgenic expression of secretory interleukin (sIL)-15 in 2B4.ζ CAR and UTD NK cells improved their effector function in the setting of chronic antigen simulation in vitro. Multiparameter flow analysis after chronic antigen exposure identified the expansion of unique NK-cell subsets. 2B4.ζ/sIL-15 CAR and sIL-15 NK cells maintained an overall activated NK-cell phenotype. This was confirmed by transcriptomic analysis, which revealed a highly proliferative and activated signature in these NK-cell groups. In vivo, 2B4.ζ/sIL-15 CAR-NK cells had potent anti-AML activity in one model, while 2B4.ζ/sIL-15 CAR and sIL-15 NK cells induced lethal toxicity in a second model. CONCLUSION: Transgenic expression of CD123-CARs and sIL-15 enabled NK cells to function in the setting of chronic antigen exposure but was associated with systemic toxicities. Thus, our study provides the impetus to explore inducible and controllable expression systems to provide cytokine signals to AML-specific CAR-NK cells before embarking on early-phase clinical testing.


Subject(s)
Cytotoxicity, Immunologic/immunology , Immunotherapy, Adoptive/methods , Interleukin-15/metabolism , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/therapy , Receptors, Chimeric Antigen/immunology , Animals , Apoptosis , Cell Proliferation , Cytokines/metabolism , Humans , Immunotherapy, Adoptive/adverse effects , Interleukin-15/genetics , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Toxicity Tests , Transcriptome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Nature ; 596(7870): 126-132, 2021 08.
Article in English | MEDLINE | ID: mdl-34290408

ABSTRACT

PD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a 'barcode' to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein-Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


Subject(s)
Antigens, Neoplasm/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Gene Expression Regulation , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cells, Cultured , Humans , Immunologic Memory , Lung Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA-Seq , Receptors, Interleukin-7/immunology , Single-Cell Analysis , Transcriptome/genetics , Tumor Microenvironment
15.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: mdl-34021032

ABSTRACT

BACKGROUND: Current therapy for osteosarcoma pulmonary metastases (PMs) is ineffective. The mechanisms that prevent successful immunotherapy in osteosarcoma are incompletely understood. We investigated the tumor microenvironment of metastatic osteosarcoma with the goal of harnessing the immune system as a therapeutic strategy. METHODS: 66 osteosarcoma tissue specimens were analyzed by immunohistochemistry (IHC) and immune markers were digitally quantified. Tumor-infiltrating lymphocytes (TILs) from 25 specimens were profiled by functional cytometry. Comparative transcriptomic studies of distinct tumor-normal lung 'PM interface' and 'PM interior' regions from 16 PMs were performed. Clinical follow-up (median 24 months) was available from resection. RESULTS: IHC revealed a statistically significantly higher concentration of TILs expressing immune checkpoint and immunoregulatory molecules in PMs compared with primary bone tumors (including programmed cell death 1 (PD-1), programmed death ligand 1 (PD-L1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and indoleamine 2,3-dioxygenase (IDO1). Remarkably, these lymphocytes are excluded at the PM interface compared with PM interior. TILs from PMs exhibited significantly higher amounts of PD-1 and LAG-3 and functional cytokines including interferon-γ (IFNγ) by flow cytometry. Gene expression profiling further confirmed the presence of CD8 and CD4 lymphocytes concentrated at the PM interface, along with upregulation of immunoregulatory molecules and IFNγ-driven genes in the same region. We further discovered a strong alternatively activated macrophage signature throughout the entire PMs along with a polymorphonuclear myeloid-derived suppressor cell signature focused at the PM interface. Expression of PD-L1, LAG-3, and colony-stimulating factor 1 receptor (CSF1R) at the PM interface was associated with significantly worse progression-free survival (PFS), while gene sets indicative of productive T cell immune responses (CD8 T cells, T cell survival, and major histocompatibility complex class 1 expression) were associated with significantly improved PFS. CONCLUSIONS: Osteosarcoma PMs exhibit immune exclusion characterized by the accumulation of TILs at the PM interface. These TILs produce effector cytokines, suggesting their capability of activation and recognition of tumor antigens. Our findings suggest cooperative immunosuppressive mechanisms in osteosarcoma PMs including immune checkpoint molecule expression and the presence of immunosuppressive myeloid cells. We identify cellular and molecular signatures that are associated with patient outcomes, which could be exploited for successful immunotherapy.


Subject(s)
Biomarkers, Tumor/analysis , Bone Neoplasms/therapy , Cytokines/analysis , Immune Checkpoint Proteins/analysis , Immunotherapy , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/immunology , Osteosarcoma/therapy , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Cytokines/genetics , Electronic Health Records , Humans , Immune Checkpoint Proteins/genetics , Immunotherapy/adverse effects , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lymphocyte Activation , Macrophage Activation , Myeloid-Derived Suppressor Cells , Osteosarcoma/genetics , Osteosarcoma/immunology , Osteosarcoma/secondary , Progression-Free Survival , Retrospective Studies , Transcriptome
16.
Cancer Discov ; 11(7): 1792-1807, 2021 07.
Article in English | MEDLINE | ID: mdl-33632774

ABSTRACT

Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.This article is highlighted in the In This Issue feature, p. 1601.


Subject(s)
Bacteroides fragilis/physiology , Colorectal Neoplasms/microbiology , Proto-Oncogene Proteins B-raf/genetics , Animals , Carcinogenesis , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/therapy , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mutation
17.
J Clin Invest ; 130(10): 5493-5507, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32955487

ABSTRACT

Senescent cells (SnCs) are implicated in the pathogenesis of age-related diseases including osteoarthritis (OA), in part via expression of a senescence-associated secretory phenotype (SASP) that includes immunologically relevant factors and cytokines. In a model of posttraumatic OA (PTOA), anterior cruciate ligament transection (ACLT) induced a type 17 immune response in the articular compartment and draining inguinal lymph nodes (LNs) that paralleled expression of the senescence marker p16INK4a (Cdkn2a) and p21 (Cdkn1a). Innate lymphoid cells, γδ+ T cells, and CD4+ T cells contributed to IL-17 expression. Intra-articular injection of IL-17-neutralizing antibody reduced joint degeneration and decreased expression of the senescence marker Cdkn1a. Local and systemic senolysis was required to attenuate tissue damage in aged animals and was associated with decreased IL-17 and increased IL-4 expression in the articular joint and draining LNs. In vitro, we found that Th17 cells induced senescence in fibroblasts and that SnCs skewed naive T cells toward Th17 or Th1, depending on the presence of TGF-ß. The SASP profile of the inflammation-induced SnCs included altered Wnt signaling, tissue remodeling, and cell-cycle pathways not previously implicated in senescence. These findings provide molecular targets and mechanisms for senescence induction and therapeutic strategies to support tissue healing in an aged environment.


Subject(s)
Interleukin-17/immunology , Osteoarthritis/immunology , Adaptive Immunity , Aging/immunology , Aging/pathology , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cellular Senescence/immunology , Disease Models, Animal , Humans , Immunity, Innate , Interleukin-17/biosynthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoarthritis/pathology , Receptors, Interleukin-4/deficiency , Receptors, Interleukin-4/genetics , Regenerative Medicine , Th17 Cells/immunology , Th17 Cells/pathology
18.
Mol Cell Proteomics ; 19(11): 1850-1859, 2020 11.
Article in English | MEDLINE | ID: mdl-32737216

ABSTRACT

Renal Cell Carcinoma (RCC) is one of the most commonly diagnosed cancers worldwide with research efforts dramatically improving understanding of the biology of the disease. To investigate the role of the immune system in treatment-naïve clear cell Renal Cell Carcinoma (ccRCC), we interrogated the immune infiltrate in patient-matched ccRCC tumor samples, benign normal adjacent tissue (NAT) and peripheral blood mononuclear cells (PBMCs isolated from whole blood, focusing our attention on the myeloid cell infiltrate. Using flow cytometric, MS, and ExCYT analysis, we discovered unique myeloid populations in PBMCs across patient samples. Furthermore, normal adjacent tissues and ccRCC tissues contained numerous myeloid populations with a unique signature for both tissues. Enrichment of the immune cell (CD45+) fraction and subsequent gene expression analysis revealed a number of myeloid-related genes that were differentially expressed. These data provide evidence, for the first time, of an immunosuppressive and pro-tumorigenic role of myeloid cells in early, clinically localized ccRCC. The identification of a number of immune proteins for therapeutic targeting provides a rationale for investigation into the potential efficacy of earlier intervention with single-agent or combination immunotherapy for ccRCC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Renal Cell/metabolism , Immunotherapy/methods , Kidney Neoplasms/metabolism , Leukocyte Common Antigens/blood , Leukocytes, Mononuclear/metabolism , Tumor Microenvironment/immunology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Flow Cytometry , Gene Expression Regulation, Neoplastic/immunology , Genomics , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Leukocytes, Mononuclear/cytology , Mass Spectrometry , Prognosis , Signal Transduction , Tandem Mass Spectrometry
19.
Clin Cancer Res ; 26(15): 4018-4030, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32332015

ABSTRACT

PURPOSE: Clinical trials with immune checkpoint inhibition in sarcomas have demonstrated minimal response. Here, we interrogated the tumor microenvironment (TME) of two contrasting soft-tissue sarcomas (STS), rhabdomyosarcomas and undifferentiated pleomorphic sarcomas (UPS), with differing genetic underpinnings and responses to immune checkpoint inhibition to understand the mechanisms that lead to response. EXPERIMENTAL DESIGN: Utilizing fresh and formalin-fixed, paraffin-embedded tissue from patients diagnosed with UPS and rhabdomyosarcomas, we dissected the TME by using IHC, flow cytometry, and comparative transcriptomic studies. RESULTS: Our results demonstrated both STS subtypes to be dominated by tumor-associated macrophages and infiltrated with immune cells that localized near the tumor vasculature. Both subtypes had similar T-cell densities, however, their in situ distribution diverged. UPS specimens demonstrated diffuse intratumoral infiltration of T cells, while rhabdomyosarcomas samples revealed intratumoral T cells that clustered with B cells near perivascular beds, forming tertiary lymphoid structures (TLS). T cells in UPS specimens were comprised of abundant CD8+ T cells exhibiting high PD-1 expression, which might represent the tumor reactive repertoire. In rhabdomyosarcomas, T cells were limited to TLS, but expressed immune checkpoints and immunomodulatory molecules which, if appropriately targeted, could help unleash T cells into the rest of the tumor tissue. CONCLUSIONS: Our work in STS revealed an immunosuppressive TME dominated by myeloid cells, which may be overcome with activation of T cells that traffic into the tumor. In rhabdomyosarcomas, targeting T cells found within TLS may be key to achieve antitumor response.


Subject(s)
Immune Checkpoint Inhibitors/pharmacology , Neoplasms, Complex and Mixed/immunology , Rhabdomyosarcoma/immunology , Tertiary Lymphoid Structures/immunology , Tumor-Associated Macrophages/immunology , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , Drug Resistance, Neoplasm/immunology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Neoplasms, Complex and Mixed/drug therapy , Neoplasms, Complex and Mixed/genetics , Neoplasms, Complex and Mixed/pathology , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Tertiary Lymphoid Structures/pathology , Tumor Escape , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Young Adult
20.
J Clin Invest ; 130(7): 3865-3884, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32324593

ABSTRACT

Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.


Subject(s)
Immunity, Cellular , Macrophages/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms, Experimental/immunology , Tumor Microenvironment/immunology , Animals , Female , Glutamine/immunology , Immunotherapy , Macrophages/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid-Derived Suppressor Cells/pathology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...