Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 124: 104110, 2024 02.
Article in English | MEDLINE | ID: mdl-38418021

ABSTRACT

Drug-eluting contact lenses (DECLs) incorporated with poly(lactic-co-glycolic acid) (PLGA) and various model drugs (ketotifen fumarate, bimatoprost and latanoprost) were fabricated using nanoelectrospray (nES) approach. The resulting DECLs demonstrated outstanding optical transmittance within the optical zone, indicating that the employed coating procedure did not compromise visual acuity under the prescribed spraying parameters. In vitro drug release assessments of the model drugs (ketotifen fumarate (KF), bimatoprost (BIM), and latanoprost (LN)) revealed a strong correlation between the model drug's hydrophobicity and the duration of drug release. Changing the drug loading of the more hydrophilic model drugs, BIM and KF, showed no impact on the drug release kinetics of DECLs loaded with BIM and KF. However, for the hydrophobic model drug, LN, the highest LN loading led to the most extended drug release. The conventional steam sterilisation method was found to damage the PLGA coating on the DECLs fabricated by nES. An alternative sterilisation strategy, such as radiation sterilisation may need to be investigated in the future study to minimise potential harm to the coating.


Subject(s)
Contact Lenses , Ketotifen , Latanoprost , Ketotifen/chemistry , Bimatoprost , Drug Delivery Systems
2.
Int J Pharm ; 610: 121279, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34774697

ABSTRACT

Personalised orodispersible films (ODFs) manufactured at the point of care offer the possibility of adapting the dosing requirements for individual patients. Inkjet printing was extensively explored as a tool to produce personalised ODFs, but it is extensively limited to dispensing liquid with low viscosity and the interaction between ink and edible substrate complicates the fabrication process. In this study, we evaluated the feasibility of using a micro-dispensing (MD) jet system capable of accurately dispensing viscous liquid to fabricate substrate-free ODFs on-demand. The model inks containing hydroxypropyl methylcellulose (HPMC) and paracetamol were used to prepare personalised ODFs by expanding the film area. Cast films were used as the control sample to benchmark the mechanical properties, disintegration time, and dosing accuracy of MD printed ODFs. Both the cast and printed films showed smooth surface morphology without any bubbles. No significant difference was found in the disintegration time of the MD printed films compared to the cast films. High precision in dosing by MD printing was achieved. The dose of paracetamol had a linear correlation with the dimension of the printed films (R2 = 0.995). The results provide clear evidence of the potential of MD printing to fabricate ODFs and the knowledge foundation of advancing MD printing to a point-of-care small-batch manufacturing technology of personalised ODFs.


Subject(s)
Excipients , Ink , Administration, Oral , Drug Delivery Systems , Humans , Hypromellose Derivatives , Printing, Three-Dimensional , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...