Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 30(12): 1658-1673.e10, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065069

ABSTRACT

Stem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. m6A RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential m6A target required for murine HSC self-renewal, symmetric commitment, and inflammation control. Global profiling of m6A identified that m6A mRNA methylation of Son increases during HSC commitment. Upon m6A depletion, Son mRNA increases, but its protein is depleted. Reintroduction of SON rescues defects in HSC symmetric commitment divisions and engraftment. Conversely, Son deletion results in a loss of HSC fitness, while overexpression of SON improves mouse and human HSC engraftment potential by increasing quiescence. Mechanistically, we found that SON rescues MYC and suppresses the METTL3-HSC inflammatory gene expression program, including CCL5, through transcriptional regulation. Thus, our findings define a m6A-SON-CCL5 axis that controls inflammation and HSC fate.


Subject(s)
DNA-Binding Proteins , Hematopoietic Stem Cells , Inflammation , RNA Methylation , Animals , Humans , Mice , Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA Methylation/genetics
2.
Sci Rep ; 13(1): 5238, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002329

ABSTRACT

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Subject(s)
RNA-Binding Proteins , RNA , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Ribosomal Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Motifs/genetics , Protein Binding , Myogenic Regulatory Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...