Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 135(8): 547-557, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31899794

ABSTRACT

Erythroferrone (ERFE) is produced by erythroblasts in response to erythropoietin (EPO) and acts in the liver to prevent hepcidin stimulation by BMP6. Hepcidin suppression allows for the mobilization of iron to the bone marrow for the production of red blood cells. Aberrantly high circulating ERFE in conditions of stress erythropoiesis, such as in patients with ß-thalassemia, promotes the tissue iron accumulation that substantially contributes to morbidity in these patients. Here we developed antibodies against ERFE to prevent hepcidin suppression and to correct the iron loading phenotype in a mouse model of ß-thalassemia [Hbb(th3/+) mice] and used these antibodies as tools to further characterize ERFE's mechanism of action. We show that ERFE binds to BMP6 with nanomolar affinity and binds BMP2 and BMP4 with somewhat weaker affinities. We found that BMP6 binds the N-terminal domain of ERFE, and a polypeptide derived from the N terminus of ERFE was sufficient to cause hepcidin suppression in Huh7 hepatoma cells and in wild-type mice. Anti-ERFE antibodies targeting the N-terminal domain prevented hepcidin suppression in ERFE-treated Huh7 cells and in EPO-treated mice. Finally, we observed a decrease in splenomegaly and serum and liver iron in anti-ERFE-treated Hbb(th3/+) mice, accompanied by an increase in red blood cells and hemoglobin and a decrease in reticulocyte counts. In summary, we show that ERFE binds BMP6 directly and with high affinity, and that antibodies targeting the N-terminal domain of ERFE that prevent ERFE-BMP6 interactions constitute a potential therapeutic tool for iron loading anemias.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Cytokines/antagonists & inhibitors , Hepcidins/metabolism , Muscle Proteins/antagonists & inhibitors , Thalassemia/drug therapy , Animals , Antibodies, Neutralizing/pharmacology , Cell Line , Cytokines/chemistry , Cytokines/metabolism , HEK293 Cells , Humans , Iron/metabolism , Male , Mice, Inbred C57BL , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Protein Domains/drug effects , Thalassemia/metabolism
2.
J Med Chem ; 51(3): 373-5, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18197612

ABSTRACT

Heat shock protein 90 (Hsp90) is a molecular chaperone that is responsible for activating many signaling proteins and is a promising target in tumor biology. We have identified small-molecule benzisoxazole derivatives as Hsp90 inhibitors. Crystallographic studies show that these compounds bind in the ATP binding pocket interacting with the Asp93. Structure based optimization led to the identification of potent analogues, such as 13, with good biochemical profiles.


Subject(s)
Antineoplastic Agents/chemical synthesis , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/chemical synthesis , Adenosine Triphosphate/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HSP90 Heat-Shock Proteins/metabolism , Humans , Isoxazoles/chemistry , Isoxazoles/pharmacology , K562 Cells , Models, Molecular , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...