Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Amyloid ; 23(3): 168-177, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27494229

ABSTRACT

Amyloid light chain (AL) amyloidosis is characterized by misfolded light chain (LC) (amyloid) deposition in various peripheral organs, leading to progressive dysfunction and death. There are no regulatory agency-approved treatments for AL amyloidosis, and none of the available standard of care approaches directly targets the LC protein that constitutes the amyloid. NEOD001, currently in late-stage clinical trials, is a conformation-specific, anti-LC antibody designed to specifically target misfolded LC aggregates and promote phagocytic clearance of AL amyloid deposits. The present study demonstrated that the monoclonal antibody 2A4, the murine form of NEOD001, binds to patient-derived soluble and insoluble LC aggregates and induces phagocytic clearance of AL amyloid in vitro. 2A4 specifically labeled all 21 fresh-frozen organ samples studied, which were derived from 10 patients representing both κ and λ LC amyloidosis subtypes. 2A4 immunoreactivity largely overlapped with thioflavin T-positive labeling, and 2A4 bound both soluble and insoluble LC aggregates extracted from patient tissue. Finally, 2A4 induced macrophage engagement and phagocytic clearance of AL amyloid deposits in vitro. These findings provide further evidence that 2A4/NEOD001 can effectively clear and remove human AL-amyloid from tissue and further support the rationale for the evaluation of NEOD001 in patients with AL amyloidosis.


Subject(s)
Amyloidogenic Proteins/immunology , Amyloidosis/immunology , Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Immunoglobulin Light Chains/chemistry , Phagocytosis , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/isolation & purification , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Antibodies, Monoclonal/biosynthesis , Benzothiazoles , Cell Line , Humans , Immunoglobulin Light Chains/isolation & purification , Mice , Monocytes/cytology , Monocytes/immunology , Protein Aggregates/immunology , Protein Binding , Staining and Labeling/methods , Thiazoles/chemistry
2.
Amyloid ; 23(2): 86-97, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26981744

ABSTRACT

INTRODUCTION: Transthyretin amyloidosis (ATTR amyloidosis) is caused by the misfolding and deposition of the transthyretin (TTR) protein and results in progressive multi-organ dysfunction. TTR epitopes exposed by dissociation and misfolding are targets for immunotherapeutic antibodies. We developed and characterized antibodies that selectively bound to misfolded, non-native conformations of TTR. METHODS: Antibody clones were generated by immunizing mice with an antigenic peptide comprising a cryptotope within the TTR sequence and screened for specific binding to non-native TTR conformations, suppression of in vitro TTR fibrillogenesis, promotion of antibody-dependent phagocytic uptake of mis-folded TTR and specific immunolabeling of ATTR amyloidosis patient-derived tissue. RESULTS: Four identified monoclonal antibodies were characterized. These antibodies selectively bound the target epitope on monomeric and non-native misfolded forms of TTR and strongly suppressed TTR fibril formation in vitro. These antibodies bound fluorescently tagged aggregated TTR, targeting it for phagocytic uptake by macrophage THP-1 cells, and amyloid-positive TTR deposits in heart tissue from patients with ATTR amyloidosis, but did not bind to other types of amyloid deposits or normal tissue. CONCLUSIONS: Conformation-specific anti-TTR antibodies selectively bind amyloidogenic but not native TTR. These novel antibodies may be therapeutically useful in preventing deposition and promoting clearance of TTR amyloid and in diagnosing TTR amyloidosis.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Epitopes/chemistry , Phagocytosis , Prealbumin/chemistry , Amino Acid Sequence , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/metabolism , Amyloid Neuropathies, Familial/pathology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Cardiomyopathies/complications , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Line , Clone Cells , Humans , Mice , Myocardium/chemistry , Myocardium/metabolism , Myocardium/pathology , Phagocytes/cytology , Phagocytes/immunology , Prealbumin/immunology , Protein Aggregates/immunology , Protein Conformation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/immunology
3.
J Neurosci ; 32(39): 13439-53, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-23015435

ABSTRACT

In addition to being a hallmark of neurodegenerative disease, axon degeneration is used during development of the nervous system to prune unwanted connections. In development, axon degeneration is tightly regulated both temporally and spatially. Here, we provide evidence that degeneration cues are transduced through various kinase pathways functioning in spatially distinct compartments to regulate axon degeneration. Intriguingly, glycogen synthase kinase-3 (GSK3) acts centrally, likely modulating gene expression in the cell body to regulate distally restricted axon degeneration. Through a combination of genetic and pharmacological manipulations, including the generation of an analog-sensitive kinase allele mutant mouse for GSK3ß, we show that the ß isoform of GSK3, not the α isoform, is essential for developmental axon pruning in vitro and in vivo. Additionally, we identify the dleu2/mir15a/16-1 cluster, previously characterized as a regulator of B-cell proliferation, and the transcription factor tbx6, as likely downstream effectors of GSK3ß in axon degeneration.


Subject(s)
Axons/metabolism , Glycogen Synthase Kinase 3/metabolism , Nerve Degeneration/enzymology , Nerve Degeneration/pathology , Neurons/pathology , Phosphotransferases/metabolism , Signal Transduction/physiology , Animals , Animals, Newborn , Cells, Cultured , Electroporation , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Female , Ganglia, Spinal/cytology , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Genotype , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Humans , Immunoprecipitation , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Nerve Degeneration/drug therapy , Nerve Degeneration/prevention & control , Nerve Growth Factor/deficiency , Nerve Tissue Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Organ Culture Techniques , Phosphorylation/physiology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Retinal Ganglion Cells/metabolism , Signal Transduction/drug effects , Transfection , Red Fluorescent Protein
4.
Dev Cell ; 22(2): 403-17, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22340501

ABSTRACT

Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development.


Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System/blood supply , Central Nervous System/metabolism , Neovascularization, Physiologic , Receptors, Tumor Necrosis Factor/metabolism , Animals , Biomarkers/metabolism , Blotting, Western , Cell Communication , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Immunoprecipitation , MAP Kinase Kinase 4/antagonists & inhibitors , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Mice , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptors, Tumor Necrosis Factor/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Zebrafish/growth & development , Zebrafish/metabolism , beta Catenin/genetics , beta Catenin/metabolism
5.
Annu Rev Neurosci ; 33: 379-408, 2010.
Article in English | MEDLINE | ID: mdl-20367445

ABSTRACT

The vascular and nervous systems share a common necessity of circuit formation to coordinate nutrient and information transfer, respectively. Shared developmental principles have evolved to orchestrate the formation of both the vascular and the nervous systems. This evolution is highlighted by the identification of specific guidance cues that direct both systems to their target tissues. In addition to sharing cellular and molecular signaling events during development, the vascular and nervous systems also form an intricate interface within the central nervous system called the neurovascular unit. Understanding how the neurovascular unit develops and functions, and more specifically how the blood-brain barrier within this unit is established, is of utmost importance. We explore the history, recent discoveries, and unanswered questions surrounding the relationship between the vascular and nervous systems with a focus on developmental signaling cues that guide network formation and establish the interface between these two systems.


Subject(s)
Blood Vessels/embryology , Blood-Brain Barrier/physiology , Neovascularization, Physiologic/physiology , Nervous System/blood supply , Nervous System/embryology , Animals , Blood Vessels/growth & development , Blood Vessels/physiology , Humans , Nervous System/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...