Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(5): e15689, 2023 May.
Article in English | MEDLINE | ID: mdl-37234658

ABSTRACT

Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.

2.
JOR Spine ; 5(4): e1227, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36601371

ABSTRACT

Background: Adolescent idiopathic scoliosis (AIS) refers to a three-dimensional spinal deformity which has a typical onset during adolescence. In most cases, the cause of the deformity cannot be clearly identified. Unbalanced paraspinal muscle activity in AIS patients was reported and hypoxia was implicated to regulate myogenesis. This study aims to investigate the association between myogenesis/muscle toning and HIF-αs activity in the pathogenesis of AIS. Methods: HIF-αs expression was examined by enzyme-linked immunosorbent assay and western blot in paraspinal myoblasts isolated from 18 subjects who underwent deformity correction surgery. QPCR was conducted to measure the gene expression levels of perinatal muscle fiber markers MYH3, MYH8; slow twitch muscle fiber markers MHY7; fast twitch muscle fiber markers MYH4; and myogenic regulatory factors MYF5 and MYOG. Slow and fast twitch muscle fiber composition in concave/convex paraspinal musculature of AIS subjects was evaluated by immunostaining of myosin heavy chain type I (MyHC I) and myosin heavy chain type II (MyHC II). Results: Reduced HIF-2α induction under hypoxia was found in paraspinal myoblast culture of 33% AIS subjects. We detected a suppression of perinatal and slow twitch muscle fiber associated genes, but not fast twitch muscle fiber-associated genes and myogenic regulatory factors in HIF-2α misexpressed AIS myoblasts. Distinct reduction of slow twitch muscle fiber was evidenced in convex paraspinal musculature, suggesting an asymmetric expression of slow twitch muscle fiber in HIF-2α misexpressed AIS patients. Conclusions: This study indicates an association of abnormal HIF-2α expression in paraspinal myoblasts and a disproportionate slow twitch muscle fiber content in the convexity of the curvature in a subset of AIS subjects, suggesting HIF-2α dysregulation as a possible risk factor for AIS. The role of HIF-2α in paraspinal muscle function during spinal growth and its relevance in AIS prognosis warrants further investigation.

3.
JOR Spine ; 4(3): e1149, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34611585

ABSTRACT

BACKGROUND: Aberrant mechanical loading of the spine causes intervertebral disc (IVD) degeneration and low back pain. Current therapies do not target the mediators of the underlying mechanosensing and mechanotransduction pathways, as these are poorly understood. This study investigated the role of the mechanosensitive transient receptor potential vanilloid 4 (TRPV4) ion channel in dynamic compression of bovine nucleus pulposus (NP) cells in vitro and mouse IVDs in vivo. METHODS: Degenerative changes and the expression of the inflammatory mediator cyclooxygenase 2 (COX2) were examined histologically in the IVDs of mouse tails that were dynamically compressed at a short repetitive hyperphysiological regime (vs sham). Bovine NP cells embedded in an agarose-collagen hydrogel were dynamically compressed at a hyperphysiological regime in the presence or absence of the selective TRPV4 antagonist GSK2193874. Lactate dehydrogenase (LDH) and prostaglandin E2 (PGE2) release, as well as phosphorylation of mitogen-activated protein kinases (MAPKs), were analyzed. Degenerative changes and COX2 expression were further evaluated in the IVDs of trpv4-deficient mice (vs wild-type; WT). RESULTS: Dynamic compression caused IVD degeneration in vivo as previously shown but did not affect COX2 expression. Dynamic compression significantly augmented LDH and PGE2 releases in vitro, which were significantly reduced by TRPV4 inhibition. Moreover, TRPV4 inhibition during dynamic compression increased the activation of the extracellular signal-regulated kinases 1/2 (ERK) MAPK pathway by 3.13-fold compared to non-compressed samples. Trpv4-deficient mice displayed mild IVD degeneration and decreased COX2 expression compared to WT mice. CONCLUSIONS: TRPV4 therefore regulates COX2/PGE2 and mediates cell damage induced by hyperphysiological dynamic compression, possibly via ERK. Targeted TRPV4 inhibition or knockdown might thus constitute promising therapeutic approaches to treat patients suffering from IVD pathologies caused by aberrant mechanical stress.

4.
Int J Mol Sci ; 20(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974795

ABSTRACT

Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1ß) or tumor necrosis factor alpha (TNF-α) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 µM), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 µM AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.


Subject(s)
Extracellular Matrix/metabolism , Gene Expression Regulation , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Nucleus Pulposus/metabolism , TRPA1 Cation Channel/biosynthesis , TRPV Cation Channels/biosynthesis , Animals , Calcium Signaling , Extracellular Matrix/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Mice , Mice, Knockout , Nucleus Pulposus/pathology
5.
Connect Tissue Res ; 58(6): 573-585, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28102712

ABSTRACT

Bone morphogenetic proteins (BMPs) play roles in promoting cell anabolism, especially in extracellular matrix production. The difference between BMP members in their capacity to modulate intervertebral disc cell activity is yet to be defined. BMP-7/OP-1 has been shown to retard disc degeneration. We compared the activity of BMP-7 with that of BMP-2 on nucleus pulposus (NP) cell phenotype and function, and investigated how they differentially affect the gene expression profiles of signaling cascade components in human NP cells under degenerative states. We found that while both BMP-2 and BMP-7 enhanced matrix production of bovine NP cells, BMP-7 is more potent than BMP-2 at various dosages (50-800 ng/ml). BMP-7 exerted a relatively stronger stimulation on sulfated glycosaminoglycan production and proliferation in human NP cells. Degenerated NP cells showed an overall weaker response to the BMPs than non-degenerated cells, and were more sensitive to BMP-7 than BMP-2 stimulation. Compared to BMP-2, BMP-7 not only induced the gene expression of canonical BMP components, but also evoked changes in MAPKs as well as CREB1 and EP300 gene expression in degenerated NP cells, suggesting potential activation of the cAMP dependent protein kinase related pathways. In contrast to BMP-2, BMP-7 concomitantly inhibited the expression of profibrotic genes. We propose that BMP-2 and BMP-7, and likely other BMPs, may operate multifaceted but discrete molecular machineries that give rise to their different capacity in regulating NP cell phenotype. Further investigations into such differential capacity may possibly derive alternative cues important for IVD repair or engineering.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 7/metabolism , Nucleus Pulposus/metabolism , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
6.
Curr Stem Cell Res Ther ; 11(6): 505-512, 2016.
Article in English | MEDLINE | ID: mdl-25429703

ABSTRACT

Intervertebral disc degeneration is a common spinal disorder and may manifest with low back pain or sciatica. The degeneration is characterized by the loss of extracellular matrix integrity and dehydration in the nucleus pulposus. This compromises the viscoelastic property and compressive strength of the disc and therefore the capacity to withstand axial load, eventually causing the disc to collapse or leading to disc bulging or herniation due to abnormal strains on the surrounding annulus. Mesenchymal stem/stromal cells (MSCs) are attractive cell sources for engineering or repair of the disc tissues with respect to their ease of availability and capacity to expand in vitro. Moreover, recent investigations have proposed a potential of MSCs to differentiate into disc-like cells. This review discusses the approaches and concerns for engineering intervertebral disc through manipulating MSCs, with a highlight on the relevance of disc progenitor discovery. Ultimately, stem cell-based engineering of intervertebral disc may facilitate the preservation of motion segment function and address degenerative disc disease in future without spinal fusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...