Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 12(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39203538

ABSTRACT

The spread of COVID-19 has significantly increased research on antiviral drugs and measures such as case isolation and contact tracing. This study compared the effects of lopinavir/ritonavir and remdesivir on COVID-19 patients with a control group receiving no antiviral drugs. Patients confirmed to have a SARS-CoV-2 infection via real-time RT-PCR were divided into three groups: lopinavir/ritonavir, remdesivir, and control. We assessed the efficacy of these drugs in reducing viral load and viral shedding duration using real-time RT-PCR and Vero E6 cell cultures. Lopinavir/ritonavir led to no detectable infectious SARS-CoV-2, with a median viral clearance time of one day, whereas one remdesivir-treated case remained culture-positive until day 12. Lopinavir/ritonavir significantly reduced viral load compared to remdesivir and control groups (p = 0.0117 and p = 0.0478). No infectious virus was detected in the lopinavir/ritonavir group, and the non-infectious SARS-CoV-2 proportion remained constant at 90%, higher than in the remdesivir and control groups (p = 0.0097). There was a significant difference in culture positivity among the groups (p = 0.0234), particularly between the lopinavir/ritonavir and remdesivir groups (p = 0.0267). These findings suggest that lopinavir/ritonavir reduces viral load and shortens the viral shedding duration compared to remdesivir, despite not being an effective treatment option.

2.
Redox Biol ; 69: 103015, 2024 02.
Article in English | MEDLINE | ID: mdl-38183796

ABSTRACT

Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5.


Subject(s)
Glutaredoxins , Hydrogen Peroxide , Hydrogen Peroxide/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Oxidation-Reduction , Glutathione/metabolism , Oxidative Stress , Chloroplasts/metabolism , Disulfides/chemistry
4.
PLOS Glob Public Health ; 3(11): e0002506, 2023.
Article in English | MEDLINE | ID: mdl-37963109

ABSTRACT

Rabies is a fatal but preventable zoonotic disease with an approximately 100% case fatality rate. The most common way to contract rabies is through the bite of a rabid animal. Post-exposure prophylaxis (PEP) by vaccination and/or immunoglobulin therapy is the most effective measure for rabies prevention. The effectiveness of vaccination depends on the level of completion of vaccination. In Bangladesh, no previous studies were conducted to evaluate adherence to government recommendations for post-exposure rabies vaccine among animal-bite cases. We conducted a cross-sectional study to collect information about adherence to government recommendations for post-exposure rabies vaccine. A total of 457 animal bite victims were selected to collect data and follow up after one month of enrollment. The majority of participants (58%, n = 265, 95% CI: 53-63%) had a history of animal bites. Most of the participants (77%) were advised to receive three doses of vaccine and 100% of them completed 3-dose of vaccine. Among the 4-dose recommended group of participants (n = 105), 78% completed full vaccination. Of the 457 participants, 20% received post-exposure vaccine on the day of bite/scratch and the majority of the participants (66%, n = 303, 95% CI: 62-71%) received post-exposure vaccine on the day between the first and third day of bite or scratch. Increasing awareness of the importance of timely vaccination is the key to reducing the time gap between animal bites and intake of the first dose post-exposure vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL