Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2962, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35618729

ABSTRACT

The control and manipulation of quantum-entangled states is crucial for the development of quantum technologies. A promising route is to couple solid-state quantum emitters through their optical dipole-dipole interactions. Entanglement in itself is challenging, as it requires both nanometric distances between emitters and nearly degenerate electronic transitions. Here we implement hyperspectral imaging to identify pairs of coupled dibenzanthanthrene molecules, and find distinctive spectral signatures of maximally entangled superradiant and subradiant electronic states by tuning the molecular optical resonances with Stark effect. We demonstrate far-field selective excitation of the long-lived subradiant delocalized state with a laser field tailored in amplitude and phase. Optical nanoscopy of the coupled molecules unveils spatial signatures that result from quantum interferences in their excitation pathways and reveal the location of each emitter. Controlled electronic-states superposition will help deciphering more complex physical or biological mechanisms governed by the coherent coupling and developing quantum information schemes.

2.
Opt Express ; 27(16): 23486-23496, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510625

ABSTRACT

We present a 3D fluorescence nanoscopy method operating at cryogenic temperatures, based on optical saturation of the excited state of individual molecules. Using a focused laser beam structured with a zero-intensity central region surrounded by intensity gradients in the three space directions, we achieve a sub-30 nm 3D optical resolution. Moreover, the analysis of the fluorescence scanning images of single molecules reveals the 3D orientation of their transition dipole with an accuracy of a few degrees. This method provides a valuable tool for locating neighboring molecules with overlapping optical transitions in order to study their interactions.

3.
Proc Natl Acad Sci U S A ; 100(20): 11350-5, 2003 Sep 30.
Article in English | MEDLINE | ID: mdl-13679586

ABSTRACT

We performed a visualization of membrane proteins labeled with 10-nm gold nanoparticles in cells, using an all-optical method based on photothermal interference contrast. The high sensitivity of the method and the stability of the signals allows 3D imaging of individual nanoparticles without the drawbacks of photobleaching and blinking inherent to fluorescent markers. A simple analytical model is derived to account for the measurements of the signal amplitude and the spatial resolution. The photothermal interference contrast method provides an efficient, reproducible, and promising way to visualize low amounts of proteins in cells by optical means.


Subject(s)
Metals/chemistry , Proteins/analysis , Animals , COS Cells , Fluorescence , Immunohistochemistry , Particle Size , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...