Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 13(22): 5061-5067, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35652901

ABSTRACT

We demonstrate that the heat capacity Boson peak (BP)-like anomaly appearing in fully ordered anharmonic molecular crystals emerges as a result of the strong interactions between propagating (acoustic) and low-energy quasi-localized (optical) phonons. In particular, we experimentally determine the low-temperature (<30 K) specific heat of the molecular crystal benzophenone and those of several of its fully ordered bromine derivatives. Subsequently, by means of theoretical first-principles methods based on density functional theory, we estimate the corresponding phonon dispersions and vibrational density of states. Our results reveal two possible mechanisms for the emergence of the BP-like anomaly: (i) acoustic-optic phonon avoided crossing, which gives rise to a pseudo-van Hove singularity in the acoustic phonon branches, and (ii) piling up of low-frequency optical phonons, which are quasi degenerate with longitudinal acoustic modes and lead to a surge in the vibrational density of states at low energies.

2.
Mol Pharm ; 14(11): 3636-3643, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28915351

ABSTRACT

With the aim of finding a correlation between the crystallization kinetics and the molecular dynamics of a substance that would allow prediction of its crystallization time as a function of temperature for a given α relaxation time, we have studied stiripentol, an anticonvulsant drug. Stiripentol has been characterized in its supercooled liquid, amorphous (glass), and crystalline states by the concurrent use of broadband dielectric spectroscopy (BDS), differential scanning calorimetry, X-ray diffraction, and optical microscopy. BDS was employed to study both the dipolar molecular dynamics and the kinetics of crystallization from the melt. Three different molecular relaxation dynamics were identified: an α relaxation corresponding to the collective reorientation of the molecules and associated with the glass transition (Tg = 246.2 ± 0.5 K), a Johari Goldstein ß relaxation that can be associated with the single-molecule precursor of the α process, and a γ relaxation arising from intramolecular motions. Isothermal crystallization of Stiripentol was studied by means of BDS well above the glass transition (between 273 and 293 K), and it was observed under optical microscope at ambient conditions. Stiripentol did not exhibit any sign of polymorphism at ambient pressure, and it recrystallized from the melt into its stable crystalline form. The crystallization kinetics did not obey the Avrami law. Stiripentol displayed a very low nucleation rate, and drops of liquid stiripentol were observed to crystallize completely from a single nucleus before the appearance of new nuclei, so that the crystallite grew according to the morphology of the liquid domains, a fact that might explain the lack of validity of the Avrami law. Possible correlations between the crystallization kinetics and the molecular dynamics have been analyzed, finding that the crystallization time has a sublinear dependence on the cooperative relaxation time, as is the case in other substances reported in the scientific literature. This could suggest a general correlation of these parameters, at least at temperatures above Tg. The low nucleation rate is an interesting feature in the quest of possible mechanisms that allow enhancing the physical stability of amorphous drugs.


Subject(s)
Dioxolanes/chemistry , Anticonvulsants/chemistry , Calorimetry, Differential Scanning , Crystallization , Dielectric Spectroscopy , Kinetics , Molecular Dynamics Simulation , Temperature , Transition Temperature , X-Ray Diffraction
3.
Sci Rep ; 7(1): 7470, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785030

ABSTRACT

Water is the most important plasticizer of biological and organic hydrophilic materials, which generally exhibit enhanced mechanical softness and molecular mobility upon hydration. The enhancement of the molecular dynamics upon mixing with water, which in glass-forming systems implies a lower glass transition temperature (T g ), is considered a universal result of hydration. In fact, even in the cases where hydration or humidification of an organic glass-forming sample result in stiffer mechanical properties, the molecular mobility of the sample almost always increases with increasing water content, and its T g decreases correspondingly. Here, we present an experimental report of a genuine antiplasticizing effect of water on the molecular dynamics of a small-molecule glass former. In detail, we show that addition of water to prilocaine, an active pharmaceutical ingredient, has the same effect as that of an applied pressure, namely, a decrease in mobility and an increase of T g . We assign the antiplasticizing effect to the formation of prilocaine-H 2 O dimers or complexes with enhanced hydrogen bonding interactions.

4.
Sci Rep ; 7(1): 1346, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28465573

ABSTRACT

We probe the temperature- and pressure-dependent specific volume (v) and dipolar dynamics of the amorphous phase (in both the supercooled liquid and glass states) of the ternidazole drug (TDZ). Three molecular dynamic processes are identified by means of dielectric spectroscopy, namely the α relaxation, which vitrifies at the glass transition, a Johari-Goldstein ß JG relaxation, and an intramolecular process associated with the relaxation motion of the propanol chain of the TDZ molecule. The lineshapes of dielectric spectra characterized by the same relaxation time (isochronal spectra) are virtually identical, within the studied temperature and pressure ranges, so that the time-temperature-pressure superposition principle holds for TDZ. The α and ß JG relaxation times fulfil the density-dependent thermodynamic scaling: master curves result when they are plotted against the thermodynamic quantity Tv γ , with thermodynamic exponent γ approximately equal to 2. These results show that the dynamics of TDZ, a system characterized by strong hydrogen bonding, is characterized by an isomorphism similar to that of van-der-Waals systems. The low value of γ can be rationalized in terms of the relatively weak density-dependence of the dynamics of hydrogen-bonded systems.

5.
J Phys Chem B ; 118(32): 9595-603, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25069596

ABSTRACT

The polymorphism of two 2-X-adamantane derivatives, X = Cl, X = Br, has been studied by X-ray powder diffraction and normal- and high-pressure (up to 300 MPa) differential scanning calorimetry. 2-Br-adamantane displays a low-temperature orthorhombic phase (space group P212121, Z = 4) and a high-temperature plastic phase (Fm3̅m, Z = 4) from 277.9 ± 1.0 K to the melting point at 413.4 ± 1.0 K. 2-Cl-adamantane presents a richer polymorphic behavior through the temperature range studied. At low temperature it displays a triclinic phase (P1̅, Z = 2), which transforms to a monoclinic phase (C2/c, Z = 8) at 224.4 ± 1.0 K, both phases being ordered. Two high-temperature orientationally disordered are found for this compound, one hexagonal (P63/mcm, Z = 6) at ca. 241 K and the highest one, cubic (Fm3̅m, Z = 4), being stable from 244 ± 1.0 K up to the melting point at 467.5 ± 1.0 K. No additional phase appears due to the increase in pressure within the studied range. The intermolecular interactions are found to be weak, especially for the 2-Br-adamantane compound for which the Br···Br as well as C-Br···H distances are larger than the addition of the van der Waals radii, thus confirming the availability of this compound for building up diamondoid blocks.

6.
J Chem Phys ; 138(10): 104906, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23514518

ABSTRACT

We propose a phenomenological model to describe the tricritical behavior of the nematic to smectic-A (N-SmA) phase transition in liquid crystal mixture. To describe the mesophase transitions in binary mixture, nematic and smectic order parameters have been coupled with the concentration. We show that a tricritical point on the N-SmA phase transition line can be achieved under certain conditions. The predictive capability of the present model for determining the tricritical point of a binary mixture displaying the N-SmA transition has been demonstrated by testing with reported phase diagrams sharing both phases.

7.
J Phys Chem B ; 115(7): 1679-88, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21287994

ABSTRACT

The phase diagram of the two-component systems (CH(3))(3)CBr + Cl(3)CBr has been experimentally determined by means of differential scanning calorimetry and X-ray powder diffraction techniques from the low-temperature ordered phases to the liquid state. Before melting, both components have the same orientationally disordered (OD) face-centered cubic (FCC) and rhombohedral (R) phases, and the two-phase equilibria [FCC + L] and [R + FCC] are accounted for by means of the existence of an isomorphic relationship between the OD phases of pure compounds. The thermodynamic assessment of such equilibria enables us to get the excess properties of the involved OD phases and to rationalize the existence of a maximum and a minimum in the [R + FCC] equilibrium on the basis of the contribution of the entropic term in the excess Gibbs energy function. At low temperature, two complexes, (CH(3))(3)CBr:Cl(3)CBr (1:1) and (CH(3))(3)CBr:2Cl(3)CBr (1:2), appear. The structures of 1:1 and 1:2 complexes have been determined to be monoclinic (P2(1)/n, c, Z = 4) and hexagonal (P6(3), Z = 6). Within both "ordered" structures, the Cl(3)CBr entities of the asymmetric unit were found to be disordered so that sites have fractional occupancies of 0.75 and 0.25 for Cl and Br atoms, in the same way that it occurs for the low-temperature monoclinic (C2/c, Z = 32) phase of Cl(3)CBr. Finally, the existence of complexes is connected with the special intermolecular interactions appearing between a methyl group and a halogen, as previously inferred by Calvet et al. [T. Calvet et al. J. Chem. Phys. 1999, 110, 4841].


Subject(s)
Hydrocarbons, Halogenated/chemistry , Temperature , Calorimetry, Differential Scanning , Models, Molecular , Powder Diffraction
8.
J Phys Chem B ; 114(18): 6099-106, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20405877

ABSTRACT

The dynamics of the pure compounds and mixed crystals formed between cycloheptanol (cC7-ol) and cyclooctanol (cC8-ol) has been studied by means of broadband dielectric spectroscopy at temperatures near and above the orientational glass transition temperature. Both compounds are known to display at least one orientationally disordered (OD) phase of simple cubic symmetry, and within this phase, a continuous formation of mixed crystals was demonstrated in the past (Rute, M. A. et al. J. Phys. Chem. B 2003, 107, 5914). The dielectric loss spectra of cC7-ol and cC8-ol show, in addition to the well-pronounced alpha-relaxation peaks with a continuous temperature shift (characteristic of the freezing of the molecular dynamics), secondary relaxations (beta and gamma for cC8-ol and gamma for cC7-ol) which are intramolecular in nature. The dynamics of several OD mixed crystals was recently studied (Singh, L. P.; Murthy, S. S. N. J. Phys. Chem. B 2008, 112, 2606), and surprisingly enough one of the secondary relaxations was not evidenced. We show here by means of a careful set of measurements for several mixed crystals and of a detailed analysis procedure the existence of the secondary relaxations for the mixed crystals. The results, moreover, doubtless reinforce the physical origin of each of the secondary relaxations.

9.
J Phys Chem B ; 112(44): 13916-22, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18844401

ABSTRACT

The experimental phase diagram of the CBrCl3+CBr4 system has been determined by means of X-ray powder diffraction and thermal analysis techniques from 200 K to the liquid state. Before melting, the two components have the same orientationally disordered (OD) face-centered cubic phase, and solid-liquid equilibrium is explained by simple isomorphism. The application of multiple crossed isopolymorphism formalism to the low-temperature solid-solid equilibria has enabled the inference of an OD rhombohedral metastable (at normal pressure) phase for CBr4. Experimental determination of the pressure-volume-temperature and construction of the pressure-temperature phase diagrams for CBr4 reveal the existence of a high-pressure phase, the rhombohedral symmetry of which is inferred by means of the thermodynamic assessment of the experimental phase diagram and demonstrated by means of high-pressure neutron diffraction measurements. The procedure used in this work confirms the connection between the appearance of metastable phases at normal pressure and their existence at high-pressure.

10.
J Phys Chem B ; 111(30): 8899-909, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17602520

ABSTRACT

The phases diagrams of the two-component systems CCl4 +CBr2Cl2 and CBrCl3 + CBr2Cl2 have been determined by means of X-ray powder diffraction and thermal analysis techniques from the low-temperature ordered phase to the liquid state. The isomorphism relationship between the stable orientationally disordered (OD) face-centered cubic (FCC) phases of CBrCl3 and CBr2Cl2 and the metastable OD FCC phase (monotropic behavior with respect to the OD rhombohedral stable phase) of CCl4 has been put into evidence throughout the continuous evolution of the lattice parameters and the existence of the two-phase equilibrium [FCC + L] for the whole range of composition in both two-component systems. This equilibrium interferes, for the CCl4 +CBr2Cl2 system, with a rhombohedral (R) plus liquid ([R + L]) equilibrium giving rise to a peritectic invariant. In addition, whatever the system, [R + FCC] equilibrium also interferes with the low-temperature equilibria between the low-temperature monoclinic (C2/c) phase and the OD R and FCC phases. In regards to the low-temperature monoclinic phases, isomorphism is evidenced, and by means of Rietveld profile refinement, any ordering of the molecules by varying the fractional occupancy of the halogen sites has been detected. The thermodynamic assessment, conducted by means of the concept of crossed isopolymorphism, coherently reproduces all the involved equilibria and provides a coherent set of data for the thermodynamic properties of nonexperimentally available phase transitions of pure compound CBr2Cl2 which enables us to obtain the topological properties of its pressure-temperature phase diagram and to infer the existence of a high-pressure R phase for such a compound.

11.
J Phys Chem B ; 110(51): 26194-203, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181276

ABSTRACT

The metastable phase diagram of the two-component system heptyloxycyanobiphenyl (7OCB)+nonyloxycyanobiphenyl (9OCB) was determined by means of modulated differential scanning calorimetry (MDSC) and optical microscopy measurements. It was experimentally established that the 7OCB+9OCB two-component system exhibits a monotropic re-entrant nematic behavior. A complete quantitative thermodynamic analysis, through Oonk's equal G analysis, was performed, allowing for the calculation of the monotropic re-entrant behavior and the prediction of two tricritical points, one of them experimentally accessible for the SmAd-to-N transition and the other non-experimentally accessible for the RN-to-SmAd transition. From specific-heat measurements, latent heats were obtained for those mixtures displaying a first-order SmAd-to-N transition. Additionally, for some mixtures, the specific-heat critical exponents (alpha), through the second-order SmAd-to-N transition, were obtained. Both batches of data enable us to access to the experimental tricritical temperature for the SmAd-to-N transition.

12.
J Phys Chem B ; 109(34): 16284-9, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16853070

ABSTRACT

The two-component system octyloxycyanobiphenyl (8OCB) + decyloxycyanobiphenil (10OCB) has been studied by means of modulated differential scanning calorimetry as well as optical microscopy. The general trends of the phase diagram are similar to the two-component system octylcyanobiphenyl (8CB) + decylcyanobiphenil (10CB), previously published. Evidence for the existence of a TCP have been reported, the molar composition being about 0.33 of 10OCB. Additionally, the smectic mesophase of the 8OCB + 10OCB mixtures has been unmistakably characterized through optical measurements as smectic A for the whole composition range.

SELECTION OF CITATIONS
SEARCH DETAIL
...