Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Biosci Bioeng ; 136(2): 75-86, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37246137

ABSTRACT

All biological phenomena can be classified as open, dissipative and non-linear. Moreover, the most typical phenomena are associated with non-linearity, dissipation and openness in biological systems. In this review article, four research topics on non-linear biosystems are described to show the examples from various biological systems. First, membrane dynamics of a lipid bilayer for the cell membrane is described. Since the cell membrane separates the inside of the cell from the outside, self-organizing systems that form spatial patterns on membranes often depend on non-linear dynamics. Second, various data banks based on recent genomics analysis supply the data including vast functional proteins from many organisms and their variable species. Since the proteins existing in nature are only a very small part of the space represented by amino acid sequence, success of mutagenesis-based molecular evolution approach crucially depends on preparing a library with high enrichment of functional proteins. Third, photosynthetic organisms depend on ambient light, the regular and irregular changes of which have a significant impact on photosynthetic processes. The light-driven process proceeds through many redox couples in the cyanobacteria constituting chain of redox reactions. The fourth topic focuses on a vertebrate model, the zebrafish, which can help to understand, predict and control the chaos of complex biological systems. In particular, during early developmental stages, developmental differentiation occurs dynamically from a fertilized egg to divided and mature cells. These exciting fields of complexity, chaos, and non-linear science have experienced impressive growth in recent decades. Finally, future directions for non-linear biosystems are presented.


Subject(s)
Cyanobacteria , Zebrafish , Animals , Cell Membrane , Photosynthesis , Lipid Bilayers
2.
Microorganisms ; 10(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36557767

ABSTRACT

The cellulolytic system of Clostridium cellulovorans mainly consisting of a cellulosome that synergistically collaborates with non-complexed enzymes was investigated using cellulosic biomass. The cellulosomes were isolated from the culture supernatants with shredded paper, rice straw and sugarcane bagasse using crystalline cellulose. Enzyme solutions, including the cellulosome fractions, were analyzed by SDS-PAGE and Western blot using an anti-CbpA antibody. As a result, C. cellulovorans was able to completely degrade shredded paper for 9 days and to be continuously cultivated by the addition of new culture medium containing shredded paper, indicating, through TLC analysis, that its degradative products were glucose and cellobiose. Regarding the rice straw and sugarcane bagasse, while the degradative activity of rice straw was most active using the cellulosome in the culture supernatant of rice straw medium, that of sugarcane bagasse was most active using the cellulosome from the supernatant of cellobiose medium. Based on these results, no alcohols were found when C. acetobutylicum was cultivated in the absence of C. cellulovorans as it cannot degrade the cellulose. While 1.5 mM of ethanol was produced with C. cellulovorans cultivation, both n-butanol (1.67 mM) and ethanol (1.89 mM) were detected with the cocultivation of C. cellulovorans and C. acetobutylicum. Regarding the enzymatic activity evaluation against rice straw and sugarcane bagasse, the rice straw cellulosome fraction was the most active when compared against rice straw. Furthermore, since we attempted to choose reaction conditions more efficiently for the degradation of sugarcane bagasse, a wet jet milling device together with L-cysteine as a reducing agent was used. As a result, we found that the degradation activity was almost twice as high with 10 mM L-cysteine compared with without it. These results will provide new insights for biomass utilization.

3.
Biology (Basel) ; 11(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36009876

ABSTRACT

The bacterial flora of the epidermal mucus of fish is closely associated with the host's health and susceptibility to pathogenic infections. In this study, we analyzed the epidermal mucus bacteria of rainbow trout (Oncorhynchus mykiss) reared in flow-through aquaculture under environmental perturbations. Over ~2 years, the bacteria present in the skin mucus and water were analyzed based on the 16S rDNA sequences. The composition of the mucus bacterial community showed significant monthly fluctuations, with frequent changes in the dominant bacterial species. Analysis of the beta- and alpha-diversity of the mucus bacterial flora showed the fluctuations of the composition of the flora were caused by the genera Pseudomonas, Yersinia, and Flavobacterium, and some species of Pseudomonas and Yersinia in the mucus were identified as antimicrobial bacteria. Examination of the antimicrobial bacteria in the lab aquarium showed that the natural presence of antimicrobial bacteria in the mucus and water, or the purposeful addition of them to the rearing water, caused a transition in the mucus bacteria community composition. These results demonstrate that specific antimicrobial bacteria in the water or in epidermal mucus comprise one of the causes of changes in fish epidermal mucus microflora.

4.
Bioresour Bioprocess ; 9(1): 49, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-38647568

ABSTRACT

This study investigated the combustion kinetics and spontaneous ignition of sweet sorghum using thermogravimetric analysis and the Frank-Kamenetskii theory. The aim was to determine the proper operating conditions for a direct combustion reactor and predict the safe ambient temperature limits for given silo designs. Oxidative heating rates of 2, 5, and 10 °C/min were set up. Graphical observation shows that combustion was composed of two different stages representing the overlapping processes of pyrolysis and char oxidation, at 131-336 °C and 336-475 °C, respectively. Samples were found to ignite at 215 °C and were extinguished at 433 °C. Different heating rates shifted combustion characteristics to higher temperatures and increased reactivity for ignition and combustion indices up to 12 and 10 times higher. The Friedman method determined the apparent activation energies representing the combustion reaction by 132.91 kJ/mol. Regarding spontaneous ignition, the temperature safe limits were predicted to be 83-84 °C and 84-87 °C for cylindrical and box silos with diameter and height of 15 and 10 m, respectively. Calculations of silos were designed within the limits of certain dimension ratios.

5.
AMB Express ; 9(1): 28, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30778890

ABSTRACT

This study was demonstrated with a coculture fermentation system using sugar beet pulp (SBP) as a carbon source combining the cellulose-degrading bacterium Clostridium cellulovorans with microbial flora of methane production (MFMP) for the direct conversion of cellulosic biomass to methane (CH4). The MFMP was taken from a commercial methane fermentation plant and extremely complicated. Therefore, the MFMP was analyzed by a next-generation sequencing system and the microbiome was identified and classified based on several computer programs. As a result, Methanosarcina mazei (1.34% of total counts) and the other methanogens were found in the MFMP. Interestingly, the simultaneous utilization of hydrogen (H2) and carbon dioxide (CO2) for methanogenesis was observed in the coculture with Consortium of C. cellulovorans with the MFMP (CCeM) including M. mazei. Furthermore, the CCeM degraded 87.3% of SBP without any pretreatment and produced 34.0 L of CH4 per 1 kg of dry weight of SBP. Thus, a gas metabolic shift in the fermentation pattern of C. cellulovorans was observed in the CCeM coculture. These results indicated that degradation of agricultural wastes was able to be carried out simultaneously with CH4 production by C. cellulovorans and the MFMP.

6.
AMB Express ; 9(1): 1, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30607514

ABSTRACT

For a resolution of reducing carbon dioxide emission and increasing food production to respond to the growth of global population, production of biofuels from non-edible biomass is urgently required. Abundant orange wastes, such as peel and strained lees, are produced as by-product of orange juice, which is available non-edible biomass. However, D-limonene included in citrus fruits often inhibits yeast growth and makes the ethanol fermentation difficult. This study demonstrated that isopropanol-butanol-ethanol fermentation ability of Clostridium beijerinckii and cellulosic biomass degrading ability of C. cellulovorans were cultivated under several concentrations of limonene. As a result, C. cellulovorans was able to grow even in the medium containing 0.05% limonene (v/v) and degraded 85% of total sugar from mandarin peel and strained lees without any pretreatments. More interestingly, C. beijerinckii produced 0.046 g butanol per 1 g of dried strained lees in the culture supernatant together with C. cellulovorans.

7.
Biosci Biotechnol Biochem ; 80(5): 945-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26923175

ABSTRACT

We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.


Subject(s)
DNA Replication , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Zebrafish/embryology , Animals , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Embryo, Nonmammalian/ultrastructure , Microscopy, Fluorescence , Staining and Labeling , Zebrafish/genetics
8.
AMB Express ; 6(1): 1, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26728466

ABSTRACT

An anaerobic mesophile, Clostridium cellulovorans, produces a multienzyme complex called the cellulosome and actively degrades polysaccharides in the plant cell wall. C. cellulovorans also changes cellulosomal subunits to form highly active combinations dependent on the carbon substrate. A previous study reported on the synergistic effects of exoglucanase S (ExgS) and endoglucanase H (EngH) that are classified into the glycosyl hydrolase (GH) families 48, and 9, respectively. In this study, we investigated synergistic effects of ExgS and EngK, a GH9 cellulase different from EngH. In addition, since EngK was known to produce cellobiose as its main product, the inhibition on cellulase activity of EngK with cellobiose was examined. As a result, the effect of cellobiose inhibition on EngK coexistent with ExgS was found to be much lower than that with EngH. Thus, although EngH and EngK are in the same GH9 family, enzymatic activity in the presence of cellobiose was significantly different.

9.
Oxid Med Cell Longev ; 2016: 5720574, 2016.
Article in English | MEDLINE | ID: mdl-28116036

ABSTRACT

The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7) and 2 enzymes involved in glucose metabolism (pgd and fbp1a) were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates.


Subject(s)
Glucose/metabolism , NF-E2-Related Factor 2/metabolism , Proteasome Endopeptidase Complex/metabolism , Zebrafish Proteins/metabolism , Animals , Gene Expression Regulation , In Situ Hybridization , Larva/metabolism , Liver/metabolism , NF-E2-Related Factor 2/genetics , Oligonucleotide Array Sequence Analysis , Proteasome Endopeptidase Complex/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Real-Time Polymerase Chain Reaction , Up-Regulation , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics
10.
Zebrafish ; 12(6): 432-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26540100

ABSTRACT

Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.


Subject(s)
DNA Replication/physiology , DNA/physiology , Zebrafish/metabolism , Animals , Cell Line , Erythrocytes , Humans , Mitosis/physiology , Species Specificity , Staining and Labeling , Time Factors
11.
Int J Syst Evol Microbiol ; 65(12): 4388-4393, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26354496

ABSTRACT

Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).


Subject(s)
Flavobacteriaceae/classification , Gastropoda/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Japan , Molecular Sequence Data , Nucleic Acid Hybridization , Phaeophyceae , Phosphatidylethanolamines/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Taiwan , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
12.
Biomed Res Int ; 2014: 438787, 2014.
Article in English | MEDLINE | ID: mdl-24795881

ABSTRACT

A multicomponent enzyme-complex prevents efficient degradation of the plant cell wall for biorefinery. In this study, the method of identifying glycoside hydrolases (GHs) to degrade hemicelluloses was demonstrated. The competence of C. cellulovorans, which changes to be suitable for degradation of each carbon source, was used for the method. C. cellulovorans was cultivated into locust bean gum (LBG) that is composed of galactomannan. The proteins produced by C. cellulovorans were separated into either fractions binding to crystalline cellulose or not. Proteins obtained from each fraction were further separated by SDS-PAGE and were stained with Coomassie Brilliant Blue and were detected for mannanase activity. The proteins having the enzymatic activity for LBG were cut out and were identified by mass spectrometry. As a result, four protein bands were classified into glycosyl hydrolase family 26 (GH26) mannanases. One of the identified mannanases, Man26E, contains a carbohydrate-binding module (CBM) family 59, which binds to xylan, mannan, and Avicel. Although mannose and galactose are the same as a hexose, the expression patterns of the proteins from C. cellulovorans were quite different. More interestingly, zymogram for mannanase activity showed that Man26E was detected in only LBG medium.


Subject(s)
Cellulase/chemistry , Clostridium cellulovorans/enzymology , Galactans/metabolism , Mannans/metabolism , Multienzyme Complexes/chemistry , Plant Gums/metabolism , Polysaccharides/chemistry , beta-Mannosidase/chemistry , Cellulase/isolation & purification , Enzyme Activation , Multienzyme Complexes/isolation & purification , Substrate Specificity , beta-Mannosidase/isolation & purification
13.
AMB Express ; 3(1): 61, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24103325

ABSTRACT

Clostridium cellulovorans has been one of promising microorganisms to use biomass efficiently; however the basic metabolic pathways have not been completely known. We carried out 13C-isotopomer-based target metabolome analysis, or carbohydrate conversion process analysis, for more profound understanding of metabolic pathways of the bacterium. Our findings that pyruvate + oxaloacetate, fumarate, and malate inside and outside cells exhibited 13C incorporation suggest that C. cellulovorans exactly fixed CO2 and partly operated the TCA cycle in a reductive manner. Accompanied with CO2 fixation, the microorganism was also found to produce and secrete lactate. Overall, our study demonstrates that a part of C. cellulovorans metabolic pathways related to glycolysis and the TCA cycle are involved in CO2 fixation.

14.
Biotechnol Prog ; 29(2): 346-51, 2013.
Article in English | MEDLINE | ID: mdl-23359609

ABSTRACT

Xylose isomerase (XI) is a key enzyme in the conversion of D-xylose, which is a major component of lignocellulosic biomass, to D-xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI-related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell-surface display system, and the xylose assimilation and fermentation properties of this XI-displaying yeast were examined. XI-displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions.


Subject(s)
Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/enzymology , Clostridium cellulovorans/enzymology , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Cell Membrane/genetics , Clostridium cellulovorans/genetics , Ethanol/metabolism , Fermentation , Gene Expression , Saccharomyces cerevisiae/genetics
15.
Appl Microbiol Biotechnol ; 97(15): 6749-57, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23149756

ABSTRACT

The biochemical properties of a putative ß-1,3-xylanase from the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 were determined from a recombinant protein (TnXyn26A) expressed in Escherichia coli. This enzyme showed specific hydrolytic activity against ß-1,3-xylan and released ß-1,3-xylobiose and ß-1,3-xylotriose as main products. It displayed maximum activity at 85 °C during a 10-min incubation, and its activity half-life was 23.9 h at 85 °C. Enzyme activity was stable in the pH range 3-10, with pH 6.5 being optimal. Enzyme activity was significantly inhibited by the presence of N-bromosuccinimide (NBS). The insoluble ß-1,3-xylan K m value was 10.35 mg/ml and the k cat value was 588.24 s(-1). The observed high thermostability and catalytic efficiency of TnXyn26A is both industrially desirable and also aids an understanding of the chemistry of its hydrolytic reaction.


Subject(s)
Thermotoga neapolitana/enzymology , Xylan Endo-1,3-beta-Xylosidase/metabolism , Amino Acid Sequence , Base Sequence , Biocatalysis , DNA Primers , Enzyme Stability , Hydrolysis , Kinetics , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid , Substrate Specificity , Xylan Endo-1,3-beta-Xylosidase/chemistry
16.
AMB Express ; 2(1): 37, 2012 Jul 29.
Article in English | MEDLINE | ID: mdl-22839966

ABSTRACT

We performed a focused proteome analysis of cellulosomal proteins predicted by a genome analysis of Clostridium cellulovorans [Tamaru, Y., et al.. 2010. J. Bacteriol. 192:901-902]. Our system employed a long monolithic column (300 cm), which provides better performance and higher resolution than conventional systems. Twenty-three cellulosomal proteins were, without purification, identified by direct analysis of the culture medium. Proteome analysis of the C. cellulovorans cellulosome after culture in various carbon sources demonstrated the production of carbon source-adapted cellulosome components.

17.
J Biosci Bioeng ; 114(2): 237-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22608994

ABSTRACT

Although membrane-associated proteins are related to many diseases and are important targets for drug discovery, their expression is often difficult in bacterial hosts such as Escherichia coli. To overcome this limitation, here, we focused on a novel host-vector system in zebrafish for the expression of human protein O-linked mannose ß-1,2-N-acetylglucosaminyltransferase 1 (hPOMGnT1) which is related to muscle-eye-brain disease. For the expression of hPOMGnT1, the vector pZex-EGFP-pXI-hPOMGnT1 was constructed and injected into fertilized eggs. Using this system, we demonstrated that recombinant hPOMGnT1 was successfully expressed in the whole bodies of zebrafish embryos.


Subject(s)
N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Animals , Embryo, Nonmammalian/metabolism , Genetic Vectors/genetics , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Membrane Proteins/metabolism , N-Acetylglucosaminyltransferases/biosynthesis , Zebrafish/embryology
18.
PLoS One ; 6(10): e26884, 2011.
Article in English | MEDLINE | ID: mdl-22046393

ABSTRACT

The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2.


Subject(s)
Cytoprotection/genetics , Gene Expression Regulation/physiology , NF-E2-Related Factor 2/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Gills/metabolism , Liver/metabolism , NF-E2-Related Factor 2/agonists , Nasal Mucosa/metabolism , Organ Specificity , Zebrafish Proteins/agonists
19.
J Bacteriol ; 193(19): 5527-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21784939

ABSTRACT

This study is the first to demonstrate the activity of putative cellulosomal protease/peptidase inhibitors (named cyspins) of Clostridium cellulovorans, using the Saccharomyces cerevisiae display system. Cyspins exhibited inhibitory activities against several representative plant proteases. This suggests that these inhibitors protect their microbe and cellulosome from external attack by plant proteases.


Subject(s)
Cellulosomes/metabolism , Clostridium cellulovorans/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Enzyme Activation/drug effects , Fluorescent Antibody Technique , Models, Biological , Peptide Hydrolases/metabolism , Plant Proteins/metabolism , Plasmids , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
20.
Microb Biotechnol ; 4(1): 64-73, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21255373

ABSTRACT

Clostridium cellulovorans, an anaerobic and mesophilic bacterium, degrades native substrates in soft biomass such as corn fibre and rice straw efficiently by producing an extracellular enzyme complex called the cellulosome. Recently, we have reported the whole-genome sequence of C. cellulovorans comprising 4220 predicted genes in 5.10 Mbp [Y. Tamaru et al., (2010) J. Bacteriol., 192: 901­902]. As a result, the genome size of C. cellulovorans was about 1 Mbp larger than that of other cellulosome-producing clostridia, mesophilic C. cellulolyticum and thermophilic C. thermocellum. A total of 57 cellulosomal genes were found in the C. cellulovorans genome, and they coded for not only carbohydrate-degrading enzymes but also a lipase, peptidases and proteinase inhibitors. Interestingly, two novel genes encoding scaffolding proteins were found in the genome. According to KEGG metabolic pathways and their comparison with 11 Clostridial genomes, gene expansion in the C. cellulovorans genome indicated mainly non-cellulosomal genes encoding hemicellulases and pectin-degrading enzymes. Thus, by examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced cellulosome-producing Clostridium strains for industrial applications such as biofuel production.


Subject(s)
Bacterial Proteins/genetics , Cellulosomes/enzymology , Clostridium cellulovorans/genetics , Clostridium/genetics , Genome, Bacterial , Bacterial Proteins/metabolism , Cellulosomes/genetics , Clostridium/enzymology , Clostridium cellulovorans/enzymology , Genome Size , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...