Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 39(1): 47-55, 2018 01 12.
Article in English | MEDLINE | ID: mdl-28968647

ABSTRACT

Aberrant sphingolipid metabolism has been reported to promote breast cancer progression. Sphingosine kinase 1 (SphK1) is a key metabolic enzyme for the formation of pro-survival S1P from pro-apoptotic ceramide. The role of SphK1 in breast cancer has been well studied in estrogen receptor (ER)-positive breast cancer; however, its role in human epidermal growth factor 2 (HER2)-positive breast cancer remains unclear. Here, we show that genetic deletion of SphK1 significantly reduced mammary tumor development with reduced tumor incidence and multiplicity in the MMTV-neu transgenic mouse model. Gene expression analysis revealed significant reduction of claudin-2 (CLDN2) expression in tumors from SphK1 deficient mice, suggesting that CLDN2 may mediate SphK1's function. It is remarkable that SphK1 deficiency in HER2-positive breast cancer model inhibited tumor formation by the different mechanism from ER-positive breast cancer. In vitro experiments demonstrated that overexpression of SphK1 in ER-/PR-/HER2+ human breast cancer cells enhanced cell proliferation, colony formation, migration and invasion. Furthermore, immunostaining of SphK1 and CLDN2 in HER2-positive human breast tumors revealed a correlation in high-grade disease. Taken together, these findings suggest that SphK1 may play a pivotal role in HER2-positive breast carcinogenesis. Targeting SphK1 may represent a novel approach for HER2-positive breast cancer chemoprevention and/or treatment.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Receptor, ErbB-2/genetics , Animals , Breast Neoplasms/metabolism , Disease Models, Animal , Female , Humans , Mice , Mice, Transgenic
2.
Carcinogenesis ; 38(12): 1218-1227, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29028945

ABSTRACT

Accumulating evidence suggests that the sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) pathway plays a pivotal role in colon carcinogenesis. Our previous studies indicate that the SphK1/S1P pathway mediates colon carcinogenesis at least by regulating cyclooxygenase 2 (COX-2) expression and prostaglandin E2 (PGE2) production. However, the mechanisms by which this pathway regulates colon carcinogenesis are still unclear. First, we show that SphK1 deficient mice significantly attenuated azoxymethane (AOM)-induced colon carcinogenesis as measured by colon tumor incidence, multiplicity, and volume. We found that AOM activates peritoneal macrophages to induce SphK1, COX-2, and tumor necrosis factor (TNF)-α expression in WT mice. Interestingly, SphK1 knockout (KO) mice revealed significant reduction of COX-2 and TNF-α expression from AOM-activated peritoneal macrophages, suggesting that SphK1 regulates COX-2 and TNF-α expression in peritoneal macrophages. We found that inoculation of WT peritoneal macrophages restored the carcinogenic effect of AOM in Sphk1 KO mice as measured by aberrant crypt foci (ACF) formation, preneoplastic lesions of colon cancer. In addition, downregulation of SphK1 only in peritoneal macrophage by short hairpin RNA (shRNA) reduced the number of ACF per colon induced by AOM. Intraperitoneal injection of sphingolipids demonstrates that S1P enhanced AOM-induced ACF formation, while ceramide inhibited. Finally, we show that SphK inhibitor SKI-II significantly reduced the number of ACF per colon. These results suggest that SphK1 expression plays a pivotal role in the early stages of colon carcinogenesis through regulating COX-2 and TNF-α expression from activated peritoneal macrophages.


Subject(s)
Carcinogenesis/metabolism , Colonic Neoplasms/pathology , Macrophages, Peritoneal/enzymology , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Animals , Colonic Neoplasms/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
J Transl Med ; 15(1): 120, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28583134

ABSTRACT

BACKGROUND: Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate pathway plays a pivotal role in colon carcinogenesis. METHODS: To further support the evidence, we investigated the effects of SphK1 using three separate animal models: SphK1 knockout mice, SphK1 overexpressing transgenic mice, and SphK1 overexpression in human colon cancer xenografts. Using azoxymethane (AOM, colon carcinogen), we analyzed colon tumor development in SphK1 KO and SphK1 overexpression in intestinal epithelial cells regulated by a tet-on system. Then, we analyzed subcutaneous tumor growth using xenografts of HT-29 human colon cancer cell. Finally, immunohistochemical analyses for SphK1 and COX-2 were performed on human colon cancer tissue microarray. RESULTS: SphK1 KO mice, compared to wild-type mice, demonstrated a significant inhibition in colon cancer development induced by AOM (58.6% vs. 96.4%, respectively, P < 0.005). Tumor multiplicity (1.00 vs. 1.64 per colon, respectively, P < 0.05) and tumor volume (14.82 mm3 vs. 29.10 mm3, P < 0.05) were both significantly reduced in SphK1 KO mice compared to wild-type mice. Next, SphK1 overexpression in HT-29 enhanced tumor growth as compared to GFP control in nude mice (229.5 mm3 vs. 90.9 mm3, respectively, P < 0.05). Furthermore, overexpression of SphK1 in intestinal epithelial cells significantly enhances AOM-induced colon tumor formation (P < 0.05). Lastly, SphK1 and COX-2 intensity tended to reduce overall survival of late stage colon cancer patients. CONCLUSIONS: SphK1 expression regulates the early stage of colon carcinogenesis and tumor growth, thus inhibition of SphK1 may be an effective strategy for colon cancer chemoprevention.


Subject(s)
Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Aged , Animals , Azoxymethane , Carcinogenesis/pathology , Cell Proliferation , Cyclooxygenase 2/metabolism , Enterocytes/metabolism , Enterocytes/pathology , Female , HT29 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neoplasm Staging
4.
Cancer Cell Int ; 14(1): 76, 2014.
Article in English | MEDLINE | ID: mdl-25197261

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is characterized by aggressive loco-regional invasion. Sphingosine kinase1 (SphK1), an enzyme in sphingolipid metabolism, is emerging as a key player in HNSCC pathology. The observation that SphK1 is overexpressed in all HNSCC stages and is associated with depth of tumor invasion, metastasis and clinical failure underscores the importance of SphK1 in HNSCC pathology. Still, the mechanisms underlying SphK1 regulation of invasion have not been delineated. Therefore, we sought to mechanistically describe how SphK1 regulates invasion in HNSCC. METHODS: Invasion assays were used to measure invasive ability of SphK1 overexpressing human tongue squamous cell carcinoma (SCC-25 cells). Western blotting, quantitative qPCR, ELISA and zymography were used to measure the effect of SphK1 and sphingosine 1-phoshate receptor 1 (S1P1) on invasion measures, MMP-2/9, E-cadherin, EGFR, IL-6/STAT3, in SCC-25 cells. RESULTS: SphK1 expression is elevated in cells with an invasive phenotype as compared to non-invasive phenotype. We show SphK1 overexpression increased EGF-induced EGFR/ERK and AKT activity, increased matrix metalloproteinase (MMP)-2/9 mRNA and reduced E-cadherin. SphK1 overexpression also increased IL-6 concentration and EGF-induced STAT3 phosphorylation, exemplifying that SphK1 modulates IL-6/STAT3 signaling. Notably, we show that S1P1 knockdown reduced IL-6/STAT3 signaling, representing another pathway by which SphK1/S1P regulates invasion. CONCLUSIONS: Taken together, our data suggest that SphK1 sits at the hub of multiple key signaling cascades, all which have been implicated in the regulation of invasiveness, making SphK1 an attractive target for the development of HNSCC therapies.

5.
Biomolecules ; 3(3): 481-513, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-24970177

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death.  Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...