Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 21(1)2022 09 24.
Article in English | MEDLINE | ID: mdl-35918180

ABSTRACT

Sugar transporter research focuses on the sugar uptake into cells. Under certain physiological conditions, however, the intracellular accumulation and secretion of carbohydrates (efflux) are relevant processes in many cell types. Currently, no cell-based system is available for specifically investigating glucose efflux. Therefore, we designed a system based on a hexose transporter-deficient Saccharomyces cerevisiae strain, in which the disaccharide maltose is provided as a donor of intracellular glucose. By deleting the hexokinase genes, we prevented the metabolization of glucose, and thereby achieved the accumulation of growth-inhibitory glucose levels inside the cells. When a permease mediating glucose efflux is expressed in this system, the inhibitory effect is relieved proportionally to the capacity of the introduced transporter. The assay is thereby suitable for screening of transporters and quantitative analyses of their glucose efflux capacities. Moreover, by simultaneous provision of intracellular glucose and extracellular xylose, we investigated how each sugar influences the transport of the other one from the opposite side of the membrane. Thereby, we could show that the xylose transporter variant Gal2N376F is insensitive not only to extracellular but also to intracellular glucose. Considering the importance of sugar transporters in biotechnology, the assay could facilitate new developments in a variety of applications.


Subject(s)
Saccharomyces cerevisiae , Xylose , Carbohydrates , Glucose/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Maltose/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sugars/metabolism , Xylose/metabolism
2.
FEMS Yeast Res ; 21(3)2021 04 07.
Article in English | MEDLINE | ID: mdl-33791789

ABSTRACT

The hexose permease Gal2 of Saccharomyces cerevisiae is expressed only in the presence of its physiological substrate galactose. Glucose tightly represses the GAL2 gene and also induces the clearance of the transporter from the plasma membrane by ubiquitination and subsequent degradation in the vacuole. Although many factors involved in this process, especially those responsible for the upstream signaling, have been elucidated, the mechanisms by which Gal2 is specifically targeted by the ubiquitination machinery have remained elusive. Here, we show that ubiquitination occurs within the N-terminal cytoplasmic tail and that the arrestin-like proteins Bul1 and Rod1 are likely acting as adaptors for docking of the ubiquitin E3-ligase Rsp5. We further demonstrate that phosphorylation on multiple residues within the tail is indispensable for the internalization and possibly represents a primary signal that might trigger the recruitment of arrestins to the transporter. In addition to these new fundamental insights, we describe Gal2 mutants with improved stability in the presence of glucose, which should prove valuable for engineering yeast strains utilizing complex carbohydrate mixtures present in hydrolysates of lignocellulosic or pectin-rich biomass.


Subject(s)
Cytoplasm/metabolism , Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Ubiquitination , Monosaccharide Transport Proteins/genetics , Phosphorylation , Protein Transport , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Ubiquitin/metabolism
3.
Front Mol Biosci ; 7: 598419, 2020.
Article in English | MEDLINE | ID: mdl-33681287

ABSTRACT

Human GLUT2 and GLUT3, members of the GLUT/SLC2 gene family, facilitate glucose transport in specific tissues. Their malfunction or misregulation is associated with serious diseases, including diabetes, metabolic syndrome, and cancer. Despite being promising drug targets, GLUTs have only a few specific inhibitors. To identify and characterize potential GLUT2 and GLUT3 ligands, we developed a whole-cell system based on a yeast strain deficient in hexose uptake, whose growth defect on glucose can be rescued by the functional expression of human transporters. The simplicity of handling yeast cells makes this platform convenient for screening potential GLUT2 and GLUT3 inhibitors in a growth-based manner, amenable to high-throughput approaches. Moreover, our expression system is less laborious for detailed kinetic characterization of inhibitors than alternative methods such as the preparation of proteoliposomes or uptake assays in Xenopus oocytes. We show that functional expression of GLUT2 in yeast requires the deletion of the extended extracellular loop connecting transmembrane domains TM1 and TM2, which appears to negatively affect the trafficking of the transporter in the heterologous expression system. Furthermore, single amino acid substitutions at specific positions of the transporter sequence appear to positively affect the functionality of both GLUT2 and GLUT3 in yeast. We show that these variants are sensitive to known inhibitors phloretin and quercetin, demonstrating the potential of our expression systems to significantly accelerate the discovery of compounds that modulate the hexose transport activity of GLUT2 and GLUT3.

SELECTION OF CITATIONS
SEARCH DETAIL
...