Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(8): 4523-4537, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30735227

ABSTRACT

Molecular order and dynamics of the CB-C9-CB liquid crystalline dimer exhibiting the nematic (N) and the twist bend nematic (Ntb) phases were investigated by proton NMR spectroscopy, using fields of 0.78 T and 7.04 T, and relaxometry. The first relaxometry experiments for a very wide Larmor frequency domain (8 kHz-300 MHz) on this system, using a combination of standard and fast field cycling NMR techniques, were performed. The spectroscopy results in the Ntb phase allowed us to probe the local molecular orientation relative to the Ntb helix axis. The relaxation data were analyzed considering order director fluctuations (ODF), molecular self-diffusion (SD) and local molecular rotations/reorientations (R) relaxation mechanisms. Global fits of theoretical relaxation models, as a function of temperature and Larmor frequency, for the phases under investigation, allowed for the determination of rotational correlation times, diffusion coefficients, viscoelastic parameters, correlation lengths and activation energies (in the case of thermally activated mechanisms). A clear difference between the structures of the N and Ntb phases was detected from the results of proton spin-lattice relaxation through distinct temperature and frequency dependencies' signatures of the collective modes. Significant pre-transitional effects were observed at the N-Ntb phase transition both from relaxometry and spectroscopy data. The experimental results correlate to data and models for comparable liquid crystalline systems.

2.
Chemistry ; 22(24): 8181-97, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27143620

ABSTRACT

Two isomeric achiral bent-core liquid crystals involving a 4-cyanoresorcinol core and containing a carbosilane unit as nanosegregating segment were synthesized and were shown to form ferroelectric liquid-crystalline phases. Inversion of the direction of one of the COO groups in these molecules leads to a distinct distribution of the electrostatic potential along the surface of the molecule and to a strong change of the molecular dipole moments. Thus, a distinct degree of segregation of the carbosilane units and consequent modification of the phase structure and coherence length of polar order result. For the compound with larger dipole moment (CN1) segregation of the carbosilane units is suppressed, and this compound forms paraelectric SmA and SmC phases; polar order is only achieved after transition to a new LC phase, namely, the ferroelectric leaning phase (SmCLs PS ) with the unique feature that tilt direction and polar direction coincide. The isomeric compound CN2 with a smaller dipole moment forms separate layers of the carbosilane groups and shows a randomized polar SmA phase (SmAPAR ) and ferroelectric polydomain SmCs PS phases with orthogonal combination of tilt and polar direction and much higher polarizations. Thus, surprisingly, the compound with the smaller molecular dipole moment shows increased polar order in the LC phases. Besides ferroelectricity, mirror-symmetry breaking with formation of a conglomerate of macroscopic chiral domains was observed in one of the SmC phases of CN1. These investigations contribute to the general understanding of the development of polar order and chirality in soft matter.

3.
Chemphyschem ; 17(2): 278-87, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26581648

ABSTRACT

A bent-core mesogen consisting of a 4-cyanoresorcinol unit as the central core and laterally fluorinated azobenzene wings forms four different smectic LC phase structures in the sequence SmA-SmCs -SmCs PAR -M, all involving polar SmCs PS domains with growing coherence length of tilt and polar order on decreasing temperature. The SmA phase is a cluster-type de Vries phase with randomized tilt and polar direction; in the paraelectric SmCs phase the tilt becomes uniform, although polar order is still short-range. Increasing polar correlation leads to a new tilted and randomized polar smectic phase with antipolar correlation between the domains (SmCs PAR ) which then transforms into a viscous polar mesophase M. As another interesting feature, spontaneous symmetry breaking by formation of a conglomerate of chiral domains is observed in the non-polar paraelectric SmCs phase.

4.
Article in English | MEDLINE | ID: mdl-25871036

ABSTRACT

A rich variety of responsive behavior occurs in complex structured fluids due to their lower symmetries. On the other hand, fluid disorder tends to increase the symmetry of liquid crystal mesophases. Here, we report direct evidence for the existence of a mesophase with CS symmetry. The observations are based on optical studies of director inversion walls in freely suspended films in electric fields under obliquely incident light. This phase is distinguished by the polarization lying in the molecular tilt plane in freely suspended films. Such a low-symmetry polar fluid phase has been long predicted to occur in bent-core liquid crystals. The stability of this phase is attributed to the bent shape of the mesogens and dominating dispersion interactions.

5.
Microsc Res Tech ; 77(10): 754-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25045045

ABSTRACT

Liquid crystals (LCs) represent a challenging group of materials for direct transmission electron microscopy (TEM) studies due to the complications in specimen preparation and the severe radiation damage. In this paper, we summarize a series of specimen preparation methods, including thin film and cryo-sectioning approaches, as a comprehensive toolset enabling high-resolution direct cryo-TEM observation of a broad range of LCs. We also present comparative analysis using cryo-TEM and replica freeze-fracture TEM on both thermotropic and lyotropic LCs. In addition to the revisits of previous practices, some new concepts are introduced, e.g., suspended thermotropic LC thin films, combined high-pressure freezing and cryo-sectioning of lyotropic LCs, and the complementary applications of direct TEM and indirect replica TEM techniques. The significance of subnanometer resolution cryo-TEM observation is demonstrated in a few important issues in LC studies, including providing direct evidences for the existence of nanoscale smectic domains in nematic bent-core thermotropic LCs, comprehensive understanding of the twist-bend nematic phase, and probing the packing of columnar aggregates in lyotropic chromonic LCs. Direct TEM observation opens ways to a variety of TEM techniques, suggesting that TEM (replica, cryo, and in situ techniques), in general, may be a promising part of the solution to the lack of effective structural probe at the molecular scale in LC studies.

6.
Materials (Basel) ; 7(5): 3494-3511, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-28788631

ABSTRACT

The construction of liquid crystal compositions consisting of the dimeric liquid crystal, CB_C9_CB (cyanobiphenyl dimer = 1'',9''-bis(4-cyanobiphenyl-4'-yl)nonane), and the range of nematic systems is explored. The materials include a laterally functionalized monomer, which was used to construct a phase diagram with CB_C9_CB, as well as one laterally linked dimer liquid crystal material and two liquid crystal gold nanoparticle (LC-Au-NPs) systems. For the Au-NP-LCs, the NP diameters were varied between ~3.3 nm and 10 nm. Stable mixtures that exhibit a nematic-nematic phase transition are reported and were investigated by POM (polarizing optical microscopy), DSC (differential scanning calorimetry) and X-ray diffraction studies.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041707, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181157

ABSTRACT

The phase transition behavior of the liquid crystal dimer α,ω-bis(4,4'-cyanobiphenyl)nonane (CBC9CB), which has been reported to exhibit a nematic-nematic phase transition, has been investigated by means of high-resolution adiabatic scanning calorimetry. This nematic-nematic phase transition is weakly first-order with a latent heat of 0.24±0.01 kJ kg(-1). Mixtures up to 40 wt % with 4-pentyl-4'-cyanobiphenyl (5CB) liquid crystals have also been investigated, which also show this nematic to nematic phase transition. The transition stays weakly first-order with a decreasing latent heat with increasing concentration of 5CB. For mixtures with more than 40 wt % uniaxial nematic-unknown nematic phase transition was not observed.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 2): 056206, 2008 May.
Article in English | MEDLINE | ID: mdl-18643141

ABSTRACT

We study electroconvection patterns that appear above the splay Fréedericksz transition in a bent-core nematic liquid crystal with positive dielectric and negative conductivity anisotropy. In contrast to most of the previously observed convection rolls in nematics, they are not shadowgraph patterns at onset. Unusual effects are observed like a transition between longitudinal and normal rolls, controlled by the excitation frequency, as well as a voltage dependent reorientation of the convection rolls in a metastable domain. We present experimentally determined pattern state diagrams for planar alignment and characterize the patterns optically.

9.
Soft Matter ; 2(1): 60-65, 2006 Dec 12.
Article in English | MEDLINE | ID: mdl-32646095

ABSTRACT

Three mesogenic dimers have been synthesized in which a five-ring bent-core moiety is connected with different calamitic units flexible spacers. The mesophase behavior of the dimers have been investigated by polarizing microscopy, differential scanning calorimetry, X-ray diffraction on oriented samples and by dielectric and electro-optical measurements. We found that two dimers exhibit a dimorphism columnar-nematic whereas the third one forms a columnar phase only. On the basis of the X-ray data a possible structure model of one of the columnar phases is proposed. The nematic phase exhibits unusual properties. A smectic-like texture can be induced by applying an electric field, which is unknown for nematic phases formed by rod-like mesogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...