Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38165103

ABSTRACT

Positive membrane tension in the stretched plasma membrane of cells and in the stretched lipid bilayer of vesicles has been well analyzed quantitatively, whereas there is limited quantitative information on negative membrane tension in compressed plasma membranes and lipid bilayers. Here, we examined negative membrane tension quantitatively. First, we developed a theory to describe negative membrane tension by analyzing the free energy of lipid bilayers to obtain a theoretical equation for negative membrane tension. This allowed us to obtain an equation describing the negative membrane tension (σosm) for giant unilamellar vesicles (GUVs) in hypertonic solutions due to negative osmotic pressure (Π). Then, we experimentally estimated the negative membrane tension for GUVs in hypertonic solutions by measuring the rate constant (kr) of rupture of the GUVs induced by the constant tension (σex) due to an external force as a function of σex. We found that larger σex values were required to induce the rupture of GUVs under negative Π compared with GUVs in isotonic solution and quantitatively determined the negative membrane tension induced by Π (σosm) by the difference between these σex values. At small negative Π, the experimental values of negative σosm agree with their theoretical values within experimental error, but as negative Π increases, the deviation increases. Negative tension increased the stability of GUVs because higher tensions were required for GUV rupture, and the rate constant of antimicrobial peptide magainin 2-induced pore formation decreased.


Subject(s)
Antimicrobial Peptides , Lipid Bilayers , Magainins , Cell Membrane/metabolism , Unilamellar Liposomes , Hypertonic Solutions
2.
Phys Chem Chem Phys ; 16(30): 15752-67, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24965206

ABSTRACT

We recently developed the single giant unilamellar vesicle (GUV) method for investigating the functions and dynamics of biomembranes. The single GUV method can provide detailed information on the elementary processes of physiological phenomena in biomembranes, such as their rate constants. Here we describe the process of pore formation induced by the antimicrobial peptide (AMP), magainin 2, and the pore-forming toxin (PFT), lysenin, as revealed by the single GUV method. We obtained the rate constants of several elementary steps, such as peptide/protein-induced pore formation in lipid membranes and the membrane permeation of fluorescent probes through the pores. Information on the entry of the cell-penetrating peptide (CPP), transportan 10 (TP10), into a single GUV and its induced pore formation in lipid membranes was also obtained. We compare the single GUV method with other methods for investigating the interaction of peptides/proteins with lipid membranes (i.e., the large unilamellar vesicle (LUV) suspension method, the GUV suspension method, and single channel recording), and discuss the pros and cons of the single GUV method. On the basis of these data, we discuss the advantages of the single GUV method.


Subject(s)
Anti-Infective Agents/pharmacology , Peptides/pharmacology , Pore Forming Cytotoxic Proteins/pharmacology , Animals
3.
Biosens Bioelectron ; 31(1): 445-50, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22152991

ABSTRACT

For the functional analysis of ion channel activity, an artificial lipid bilayer suspended over microwells was formed that ruptured giant unilamellar vesicles on a Si substrate. Ca(2+) ion indicators (fluo-4) were confined in the microwells by sealing the microwells with a lipid bilayer. An overhang formed at the microwells prevented the lipid membrane from falling into them and allowed the stable confinement of the fluorescent probes. The transport of Ca(2+) ions through the channels formed by α-hemolysin inserted in a lipid membrane was analyzed by employing the fluorescence intensity change of fluo-4 in the microwells. The microwell volume was very small (1-100 fl), so a highly sensitive monitor could be realized. The detection limit is several tens of ions/s/µm(2), and this is much smaller than the ion current in a standard electrophysiological measurement. Smaller microwells will make it possible to mimic a local ion concentration change in the cells, although the signal to noise ratio must be further improved for the functional analysis of a single channel. We demonstrated that a microwell array with confined fluorescent probes sealed by a lipid bilayer could constitute a basic component of a highly sensitive biosensor array that works with functional membrane proteins. This array will allow us to realize high throughput and parallel testing devices.


Subject(s)
Bacterial Toxins/chemistry , Calcium/chemistry , Fluorescent Dyes/chemistry , Hemolysin Proteins/chemistry , Ion Channel Gating , Lipid Bilayers/chemistry , Microarray Analysis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Equipment Failure Analysis , Fluorescent Dyes/analysis , Ion Transport , Reproducibility of Results , Sensitivity and Specificity , Silicon/chemistry
4.
Chem Phys Lipids ; 164(5): 351-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21524642

ABSTRACT

The use of giant unilamellar vesicles (GUVs) for investigating the properties of biomembranes is advantageous compared to the use of small-sized vesicles such as large unilamellar vesicles (LUVs). Experimental methods using GUVs, such as the single GUV method, would benefit if there was a methodology for obtaining a large population of similar-sized GUVs composed of oil-free membranes. We here describe a new membrane filtering method for purifying GUVs prepared by the natural swelling method and demonstrate that, following purification of GUVs composed of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes suspended in a buffer, similar-sized GUVs with diameters of 10-30 µm are obtained. Moreover, this method enabled GUVs to be separated from water-soluble fluorescent probes and LUVs. These results suggest that the membrane filtering method can be applied to GUVs prepared by other methods to purify larger-sized GUVs from smaller GUVs, LUVs, and various water-soluble substances such as proteins and fluorescent probes. This method can also be used for concentration of dilute GUV suspensions.


Subject(s)
Filtration/methods , Unilamellar Liposomes/isolation & purification , Fluorescent Dyes/chemistry , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Unilamellar Liposomes/chemistry
5.
J Phys Chem B ; 114(37): 12018-26, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20799752

ABSTRACT

The pore formation in lipid membranes induced by the antimicrobial peptide magainin 2 is considered to be the main cause for its bactericidal activity. To reveal the mechanism of the pore formation, it is important to elucidate the kinetic pathway of magainin 2-induced pore formation in lipid membranes. In this report, to examine the change in pore size over time during pore formation which can monitor its kinetic pathway, we investigated the rate of the leakage of various sized fluorescent probes through the magainin 2-induced pores in single giant unilamellar vesicles (GUVs) of 50% dioleoylphosphatidylglycerol (DOPG)/50% dioleoylphosphatidylcholine (DOPC) membrane. Magainin 2- induced leakage of Texas-Red dextran 10,000, Texas-Red dextran 3000, and Alexa-Fluor trypsin inhibitor occurred in two stages; a transient rapid leakage in the initial stage followed by a stage of slow leakage. In contrast, magainin 2 induced a transient, but very small (10-20%), leakage of fluorescent probes of a larger size such as Texas-Red dextran 40,000 and FITC-BSA. These results indicate that magainin 2 molecules initially induce a large, transient pore in lipid membranes following which the radius of the pore decreases to a stable smaller size. We estimated the radius of these pores, which increases with an increase in magainin 2 concentration. On the basis of these data, we propose a hypothesis on the mechanism of magainin 2-induced pore formation.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Animals , Cattle , Cell Membrane/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Kinetics , Molecular Weight , Phosphatidylcholines/chemistry , Porosity/drug effects , Serum Albumin, Bovine/metabolism , Unilamellar Liposomes/metabolism
6.
J Phys Chem B ; 113(14): 4846-52, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19267489

ABSTRACT

Antimicrobial peptide magainin 2 forms pores in lipid membranes to induce leakage of internal contents of cells, which is a main cause of its bactericidal activity. However, the conditions and the mechanism of its pore formation remain unclear. In this report, to reveal the effect of the surface charge density of membranes on magainin 2-induced pore formation, we investigated the interaction of magainin 2 with giant unilamellar vesicles (GUVs) composed of a mixture of electrically neutral dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylglycerol (DOPG) in various ratios, using the single GUV method. We found that magainin 2 induced pores in the membranes of all kinds of single GUVs. For GUVs with the same charge density, the rate of the pore formation increased with magainin 2 concentration. The magainin 2 concentrations in a buffer required to induce the same rate of the pore formation greatly increased with a decrease in the surface charge density; e.g., the magainin 2 concentrations required for the pore formation in 30% DOPG/70% DOPC-GUVs were 50 times higher than those in 60% DOPG/40% DOPC-GUVs. However, after we converted the magainin 2 concentration in the buffer into that in the membrane interface, Xbmag, we found that Xbmag mainly determines the rate of the pore formation in various GUVs. These data support our model of two-state transition from the binding state to the pore state of the GUV for magainin 2-induced pore formation.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Membrane Lipids/metabolism , Unilamellar Liposomes/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Binding Sites , Biological Transport, Active , Magainins , Membrane Lipids/chemistry , Models, Biological , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Surface Properties , Time Factors , Unilamellar Liposomes/chemistry , Xenopus Proteins/chemical synthesis , Xenopus Proteins/chemistry
7.
Biophys J ; 92(9): 3178-94, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17293394

ABSTRACT

Tea catechins, which are flavonoids and the main components of green tea extracts, are thought to have antibacterial and antioxidant activity. Several studies indicate that lipid membranes are one of the targets of the antibacterial activity of catechins. Studies using a suspension of large unilamellar vesicles (LUVs) indicate that catechin causes gradual leakage of internal contents from LUVs. However, the detailed characteristics of the interaction of catechins with lipid membranes remain unclear. In this study, we investigated the interaction of (-)-epigallocatechin gallate (EGCg), a major catechin in tea extract, with single giant unilamellar vesicles (GUVs) of egg phosphatidylcholine (egg PC) using phase-contrast fluorescence microscopy and the single GUV method. We prepared GUVs of lipid membranes of egg PC in a physiological ion concentration ( approximately 150 mM NaCl) using the polyethylene glycol-lipid method. Low concentrations of EGCg at and above 30 muM induced rapid leakage of a fluorescent probe, calcein, from the inside of single egg PC-GUVs; after the leakage, the GUVs changed into small lumps of lipid membranes. On the other hand, phase-contrast microscopic images revealed the detailed process of the EGCg-induced burst of GUVs, the decrease in their diameter, and their transformation into small lumps. The dependence of the fraction of burst GUVs on EGCg concentration was almost the same as that of the fraction of leaked GUV. This correlation strongly indicates that the leakage of calcein from the inside to the outside of the GUV occurred as a result of the burst of the GUV. The fraction of completely leaked GUV and the fraction of the burst GUV increased with time and also increased with increasing EGCg concentration. We compared the EGCg-induced leakage from single GUVs with EGCg-induced leakage from a LUV suspension. The analysis of the EGCg-induced shape changes shows that the binding of EGCg to the external monolayer of the GUV increases its membrane area, inducing an increase in its surface pressure. Small angle x-ray scattering experiments indicate that the intermembrane distance of multilamellar vesicles of PC membrane greatly decreased at EGCg concentrations above the threshold, suggesting that neighboring membranes came in close contact with each other. On the basis of these results, we discuss the mechanism of the EGCg-induced bursting of vesicles.


Subject(s)
Camellia sinensis/chemistry , Catechin/analogs & derivatives , Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Fluidity , Phosphatidylcholines/chemistry , Catechin/chemistry , Diffusion , Surface Properties
8.
Biochemistry ; 44(48): 15823-33, 2005 Dec 06.
Article in English | MEDLINE | ID: mdl-16313185

ABSTRACT

It is thought that magainin 2, an antimicrobial peptide, acts by binding to lipid membranes. Recent studies using a suspension of large unilamellar vesicles (LUVs) indicate that magainin 2 causes gradual leakage from LUVs containing negatively charged lipids. However, the details of the characteristics of the membrane permeability and the mechanism of pore formation remain unclear. In this report, we investigated the interaction of magainin 2 with single giant unilamellar vesicles (GUVs) composed of a dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol mixture (50% DOPG/50% DOPC GUVs) containing the fluorescent dye, calcein, by phase contrast, fluorescence microscopy using the single GUV method. Low concentrations (3-10 microM) of magainin 2 caused the rapid leakage of calcein from single GUVs but did not disrupt the liposomes or change the membrane structure, showing directly that magainin 2 forms membrane pores through which calcein leaked. The rapid leakage of calcein from a GUV started stochastically, and once it began, the complete leakage occurred rapidly (6-60 s). The fraction of completely leaked GUV, P(L), increased with time and also with an increase in magainin 2 concentration. Shape changes in these GUVs occurred prior to the pore formation and also at lower concentrations of magainin 2, which could not induce the pore formation. Their analysis indicates that binding of magainin 2 to the external monolayer of the GUV increases its membrane area, thereby raising its surface pressure. The addition of lysophosphatidylcholine into the external monolayer of GUVs increased P(L). On the basis of these results, we propose the two-state transition model for the pore formation.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Liposomes/chemistry , Permeability/drug effects , Xenopus Proteins/pharmacology , Fluoresceins/chemistry , Lysophosphatidylcholines/pharmacology , Magainins , Phosphatidylglycerols
9.
Biosci Biotechnol Biochem ; 69(1): 166-78, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15665482

ABSTRACT

Neoglycolipids composed of disaccharide glycoside and phospholipid were designed and prepared as mimetics of lactosylceramide. The lactosyl- and N-acetyllactosaminyl-phospholipids (Lac-DPPA and LacNAc-DPPA) were enzymatically synthesized from lactose and LacNAc respectively by cellulase-mediated condensation with 1,6-hexanediol, followed by conjugation of the resulting glycosides and dipalmitoylphosphatidyl choline (DPPC) mediated by Streptomyces phospholipase D. Alternatively, allyl beta-lactoside was ozonolyzed to give an aldehyde, which was condensed with dipalmytoyl phosphatidyl ethanolamine to afford a second type of glycolipid (Lac-DPPE). NMR spectroscopy indicated that the neoglycolipids behave differently in different solvent systems. X-ray diffraction clearly showed that multilamellar vesicles (MLVs) of Lac-DPPE and Lac-DPPA-MLV are in the bilayer gel phase at 20 degrees C, whereas those of Lac-DPPE-MLV were in the lamellar liquid-crystalline phase at 50 degrees C. Differential scanning calorimetry showed that Lac-DPPE-MLV had complex thermotropic behavior depending on the incubation conditions. After a long incubation at 10 degrees C, endothermic transitions are observed at 39.6, 42.3 degrees C, and 42.9 degrees C. These neoglycolipids have the ability to trap calcein, a chelating derivative of fluorescein, in MLVs and showed specific binding to lectin in plate assays using fluorescently labeled compounds.


Subject(s)
Glycolipids/chemical synthesis , Liposomes/chemistry , Calorimetry, Differential Scanning , Glycolipids/chemistry , Lactosylceramides/chemistry , Lectins/chemistry , Molecular Structure , X-Ray Diffraction
10.
Biochim Biophys Acta ; 1667(1): 1-6, 2004 Nov 17.
Article in English | MEDLINE | ID: mdl-15533300

ABSTRACT

We have investigated the stability of giant unilamellar vesicles (GUVs) and large unilamellar vesicles (LUVs) of lipid membranes in the liquid-ordered phase (lo phase) against a detergent, Triton X-100. We found that in the presence of high concentrations of Triton X-100, the structure of GUVs and LUVs of dipalmitoyl-PC (DPPC)/cholesterol (chol) and sphingomyelin (SM)/chol membranes in the lo phase was stable and no leakage of fluorescent probes from the vesicles occurred. We also found that ether-linked dihexadecylphosphatidylcholine (DHPC) membranes containing more than 20 mol% cholesterol were in the lo phase, and that DHPC/chol-GUV and DHPC/chol-LUV in the lo phase were stable and no leakage of internal contents occurred in the presence of Triton X-100. In contrast, octylglucoside solution could easily break these GUVs and LUVs of the lo phase membranes and induced internal contents leakage. These data indicate that GUVs and LUVs of the lo phase membranes are very valuable for practical use.


Subject(s)
Liposomes/chemistry , Octoxynol/pharmacology , Cholesterol , Permeability/drug effects , Phase Transition , Phosphatidylcholines , Sphingomyelins
11.
Biochim Biophys Acta ; 1564(1): 173-82, 2002 Aug 19.
Article in English | MEDLINE | ID: mdl-12101010

ABSTRACT

Lanthanides such as La(3+) and Gd(3+) are well known to have large effects on the function of membrane proteins such as mechanosensitive ionic channels and voltage-gated sodium channels, and also on the structure of phospholipid membranes. In this report, we have investigated effects of La(3+) and Gd(3+) on the shape of giant unilamellar vesicle (GUV) of dioleoylphosphatidylcholine (DOPC-GUV) and GUV of DOPC/cholesterol by the phase-contrast microscopy. The addition of 10-100 microM La(3+) (or Gd(3+)) through a 10-microm diameter micropipette near the DOPC-GUV (or DOPC/cholesterol-GUV) triggered several kinds of shape changes. We have found that a very low concentration (10 microM) of La(3+) (or Gd(3+)) induced a shape change of GUV such as the discocyte via stomatocyte to inside budded shape transformation, the two-spheres connected by a neck to prolate transformation, and the pearl on a string to cylinder (or tube) transformation. To understand the effect of these lanthanides on the shape of the GUV, we have also investigated phase transitions of 30 microM dipalmitoylphosphatidylcholine-multilamellar vesicle (DPPC-MLV) by the ultra-sensitive differential scanning calorimetry (DSC). The chain-melting phase transition temperature and the L(beta') to P(beta') phase transition temperature of DPPC-MLV increased with an increase in La(3+) concentration. This result indicates that the lateral compression pressure of the membrane increases with an increase in La(3+) concentration. Thereby, the interaction of La(3+) (or Gd(3+)) on the external monolayer membrane of the GUV induces a decrease in its area (A(ex)), whereas the area of the internal monolayer membrane (A(in)) keeps constant. Therefore, the shape changes of the GUV induced by these lanthanides can be explained reasonably by the decrease in the area difference between two monolayers (DeltaA=A(ex)-A(in)).


Subject(s)
Gadolinium/pharmacology , Lanthanum/pharmacology , Liposomes/chemistry , Phosphatidylcholines/chemistry , Calorimetry, Differential Scanning , In Vitro Techniques , Microscopy, Phase-Contrast , Particle Size , Spectrometry, Fluorescence , Thermodynamics , X-Ray Diffraction
12.
J Biol Phys ; 28(2): 253-66, 2002 Jun.
Article in English | MEDLINE | ID: mdl-23345773

ABSTRACT

We investigated effect of electrostatic interactions due to surfacecharges on structures and stability of cubic phases of monoolein (MO)membrane using the small-angle X-ray scattering method. Firstly, wechanged the surface charge density of the membrane by usingdioleoylphosphatidic acid (DOPA). As increasing DOPA concentration in themembrane at 30 wt % lipid concentration, a Q(224) to Q(229) phasetransition occurred at 0.6 mol % DOPA, and at and above 25 mol %, DOPA/MOmembranes were in the L(α) phase. NaCl in the bulk phase reduced theeffect of DOPA. These results indicate that as the electrostaticinteractions increase, the most stable phase changes as follows: Q(224)⇒ Q(229) ⇒ L(α). The increase in DOPAconcentration reduced the absolute value of spontaneous curvature of themembrane, | H(0) |. Secondly, we changed the surface charge of themembrane by adding a de novo designed peptide, which has netpositive charges and a binding site on the electrically neutral membraneinterface. The peptide-1 (WLFLLKKK) induced a Q(224) to Q(229)phase transition in the MO membrane at low peptide concentration. As NaClconcentration increases, the MO/peptide-1 membrane changed from Q(229)to Q(224) phase. The increase in peptide-1 concentration reduced |H(0) |. Based on these results, the stability of the cubic phases and themechanism of phase transition between cubic phase and L(α) phase arediscussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...