Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Conf Proc IEEE Eng Med Biol Soc ; 2004: 3696-9, 2004.
Article in English | MEDLINE | ID: mdl-17271096

ABSTRACT

Due to a tremendous complexity of the human cardiovascular system it remains unfeasible to numerically simulate larger sections of the circulatory system using the full three-dimensional (viscous, incompressible Navier-Stokes) equations for blood flow in compliant vessels. Several "effective" one-dimensional models have been used to simplify the calculation in the axially symmetric sections. All of the one-dimensional models assume an ad hoc axial velocity profile to obtain a closed system of equations, and the Law of Laplace (the independent ring model) to model the vessel wall behavior. In this work we obtain an effective system of equations with the following two novel features: (1) the effective equations do not require an ad hoc closure assumption (the closure follows from the analysis of the original three-dimensional equations) and (2) the vessel wall is modeled as a nonlinearly elastic shell using the Koiter model or the nonlinear membrane model. The first novelty provides a higher-order accurate solution to the original three-dimensional problem, and the second allows deformations of the vessel wall that are not necessarily small.

SELECTION OF CITATIONS
SEARCH DETAIL
...