Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biol Sex Differ ; 15(1): 44, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816868

ABSTRACT

BACKGROUND: The outcomes of traumatic brain injury (TBI) exhibit variance contingent upon biological sex. Although female sex hormones exert neuroprotective effects, the administration of estrogen and progesterone has not yielded conclusive results. Hence, it is conceivable that additional mediators, distinct from female sex hormones, merit consideration due to their potential differential impact on TBI outcomes. Calcitonin gene-related peptide (CGRP) exhibits sexually dimorphic expression and demonstrates neuroprotective effects in acute brain injuries. In this study, we aimed to examine sex-based variations in TBI structural and functional outcomes with respect to CGRP expression. METHODS: Male and female Sprague Dawley rats were exposed to controlled cortical impact to induce severe TBI, followed by interventions with and without CGRP inhibition. In the acute phase of TBI, the study centered on elucidating the influence of CGRP on oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and endothelial nitric oxide synthase (eNOS) signaling in the peri-impact tissue. Subsequently, during the chronic phase of TBI, the investigation expanded to evaluate CGRP expression in relation to lesion volume, microvascular dysfunction, and white matter injury, as well as working and spatial memory, anxiety-like, and depression-like behaviors in subjects of both sexes. RESULTS: Female rats exhibited elevated levels of CGRP in the peri-impact brain tissue during both baseline conditions and in the acute and chronic phases of TBI, in comparison to age-matched male counterparts. Enhanced CGRP levels in specific brain sub-regions among female rats correlated with superior structural and functional outcomes following TBI compared to their male counterparts. CGRP inhibition induced heightened oxidative stress and a reduction in the expression of Nrf2 and eNOS in both male and female rats, with the observed alteration being more pronounced in females than in males. CONCLUSIONS: This study marks the inaugural identification of CGRP as a downstream mediator contributing to the sexually dimorphic response observed in TBI outcomes.


Investigating sex disparities in traumatic brain injury (TBI) is crucial for the advancement of precision therapeutics. Despite the neuroprotective effects demonstrated by female sex hormones, the administration of estrogen and progesterone has not produced conclusive results. Therefore, it is conceivable that additional mediators, separate from female sex hormones, warrant consideration due to their potential differential influence on TBI outcomes. In this study, we examined sex-related variations in calcitonin gene-related peptide (CGRP) expression in peri-impact brain tissue and investigated its potential implications on associated TBI outcomes. CGRP exhibits sexually dimorphic expression and exerts a multifaceted influence on diverse physiological processes that contribute to the pathophysiology of TBI. Our findings reveal that female rats exhibit heightened CGRP levels at both baseline and post-TBI within specific brain sub-regions, thereby contributing to superior structural and functional outcomes compared to their age-matched male counterparts. Additionally, we identified substantial sex-based variations in mechanisms modulated by CGRP pertaining to oxidative stress and microvascular dysfunction. The disparities in CGRP levels may be crucial for comprehending the advantageous outcomes noted in female TBI. Therefore, elucidating the sex-related distinctions in CGRP within TBI brains could pave the way for improved management and treatment strategies for TBI in both male and female individuals.


Subject(s)
Brain Injuries, Traumatic , Calcitonin Gene-Related Peptide , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Sex Characteristics , Animals , Calcitonin Gene-Related Peptide/metabolism , Female , Male , Brain Injuries, Traumatic/metabolism , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Brain/metabolism , Rats
2.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405863

ABSTRACT

Aims: This study aims to elucidate the underlying mechanisms of diving reflex, a powerful endogenous mechanism supporting underwater mammalian survival. Antioxidative responses, observed in marine mammals, may be contributing factors. Using a multi-organ approach, this study assesses whether acute and chronic diving reflex activate nuclear factor-erythroid-2-related factor 2 (NRF2) signaling pathways, which regulate cellular antioxidant responses. Methods: Male Sprague-Dawley rats ( n =38) underwent either a single diving session to elicit acute diving reflex, or daily diving sessions for 4-weeks to produce chronic diving reflex. NRF2 (total, nuclear, phosphorylated), NRF2-downstream genes, and malondialdehyde were assessed via Western blot, immunofluorescence, RT-PCR, and ELISA in brain, lung, kidney, and serum. Results: Diving reflex increased nuclear NRF2, phosphorylated NRF2, and antioxidative gene expression, in an organ-specific and exposure time-specific manner. Comparing organs, the brain had the highest increase of phosphorylated NRF2 expression, while kidney had the highest degree of nuclear NRF2 expression. Comparing acute and chronic sessions, phosphorylated NRF2 increased the most with chronic diving reflex, but acute diving reflex had the highest antioxidative gene expression. Notably, calcitonin gene-related peptide appears to mediate diving reflex' effects on NRF2 activation. Conclusions: Acute and chronic diving reflex activate potent NRF2 signaling in the brain and peripheral organs. Interestingly, acute diving reflex induces higher expression of downstream antioxidative genes compared to chronic diving reflex. This result contradicts previous assumptions requiring chronic exposure to diving for induction of antioxidative effects and implies that the diving reflex has a strong translational potential during preconditioning and postconditioning therapies. Key Points: Diving reflex activates potent NRF2 signaling via multiple mechanisms, including phosphorylation, nuclear translocation, and KEAP1 downregulation with both acute and chronic exposure.Diving reflex activates NRF2 via differential pathways in the brain and other organs; phosphorylated NRF2 increases more in the brain, while nuclear NRF2 increases more in the peripheral organs.Acute diving reflex exposure induces a more pronounced antioxidative effect than chronic diving reflex exposure, indicating that the antioxidative response activated by diving reflex is not dependent upon chronic adaptive responses and supports diving reflex as both a preconditioning and postconditioning treatment.

3.
Bioelectron Med ; 9(1): 30, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087375

ABSTRACT

Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.

4.
Transl Stroke Res ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493939

ABSTRACT

Subarachnoid hemorrhage (SAH) is a severe form of stroke that can cause unpredictable and diffuse cerebral damage, which is difficult to detect until it becomes irreversible. Therefore, there is a need for a reliable method to identify dysfunctional regions and initiate treatment before permanent damage occurs. Neurobehavioral assessments have been suggested as a possible tool to detect and approximately localize dysfunctional cerebral regions. In this study, we hypothesized that a neurobehavioral assessment battery could be a sensitive and specific method for detecting damage in discrete cerebral regions following SAH. To test this hypothesis, a behavioral battery was employed at multiple time points after SAH induced via an endovascular perforation, and brain damage was confirmed via postmortem histopathological analysis. Our results demonstrate that impairment of sensorimotor function accurately predict damage in the cerebral cortex (AUC 0.905; sensitivity 81.8%; specificity 90.9%) and striatum (AUC 0.913; sensitivity 90.1%; specificity 100%), while impaired novel object recognition is a more accurate indicator of damage to the hippocampus (AUC 0.902; sensitivity 74.1%; specificity 83.3%) than impaired reference memory (AUC 0.746; sensitivity 72.2%; specificity 58.0%). Tests for anxiety-like and depression-like behaviors predict damage to the amygdala (AUC 0.900; sensitivity 77.0%; specificity 81.7%) and thalamus (AUC 0.963; sensitivity 86.3%; specificity 87.8%), respectively. This study suggests that recurring behavioral testing can accurately predict damage in specific brain regions, which could be developed into a clinical battery for early detection of SAH damage in humans, potentially improving early treatment and outcomes.

5.
Neurol Int ; 14(4): 997-1006, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36548184

ABSTRACT

BACKGROUND: Dopamine Responsive Dystonia (DRD) and Juvenile Parkinsonism (JP) are two diseases commonly presenting with parkinsonian symptoms in young patients. Current clinical guidelines offer a diagnostic approach based on molecular analysis. However, developing countries have limitations in terms of accessibility to these tests. We aimed to assess the utility of imaging equipment, usually more available worldwide, to help diagnose and improve patients' quality of life with these diseases. METHODS: We performed a systematic literature review in English using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and meta-analysis of observational studies in epidemiology (MOOSE) protocols. We only used human clinical trials about dopamine responsive dystonia and juvenile parkinsonism patients in which a fluorodopa (FD) positron emission tomography (PET) scan was performed to identify its use in these diseases. RESULTS: We included six studies that fulfilled our criteria. We found a clear pattern of decreased uptake in the putamen and caudate nucleus in JP cases. At the same time, the results in DRD were comparable to normal subjects, with only a slightly decreased marker uptake in the previously mentioned regions by the FD PET scan. CONCLUSIONS: We found a distinctive pattern for each of these diseases. Identifying these findings with FD PET scans can shorten the delay in making a definitive diagnosis when genetic testing is unavailable, a common scenario in developing countries.

6.
Cureus ; 14(4): e24324, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35607557

ABSTRACT

Purpose The purpose of this study is to evaluate the impact in the development of intracerebral hemorrhage in elderly critically ill patients who received prophylactic subcutaneous unfractionated heparin (SCUFH) less than 24 hours after undergoing emergency neurosurgery.  Methods A retrospective analysis was performed on patients who underwent emergency neurosurgery and were admitted to the surgical intensive care unit (SICU) at a tertiary care center over a 10-year period. Administration of prophylactic SCUFH within 24 hours of neurosurgery was required for inclusion. Demographic and clinical characteristics were recorded. The primary outcome was a rate of postoperative hemorrhagic complications with respect to age. Results We identified 223 emergency neurosurgical patients: 100 (45%) patients did not receive prophylactic SCUFH and were excluded. The remaining 123 (55%) patients met all inclusion criteria, of whom 73 (59%) patients were under 65 years old, and 50 (41%) patients were over 65 years old. Patients under 65 years old had significantly lower body mass index (BMI), lower Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE III, and Simplified Acute Physiology Score (SAPS) scores, and shorter median SICU length of stay compared to patients over 65 years old. No statistically significant difference in the rate of postoperative hemorrhagic or non-hemorrhagic neurological complications was observed between patients in either age group.  Conclusion Age over 65 years was not associated with a higher risk of postoperative hemorrhage in patients who received SCUFH after emergency neurosurgery. SCUFH can be safely used as a chemoprophylactic agent against venous thromboembolism for elderly patients when used within 24 hours after emergency neurosurgery.

7.
Cureus ; 12(11): e11509, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33354453

ABSTRACT

Wilson's disease (WD) is an autosomal recessive disease that presents mainly with hepatic, neurological, and psychiatric manifestations. Neurological manifestations have been described in the past. Nevertheless, the pathophysiology and the clinical relevance of these manifestations have not been described in great detail in the medical literature. We aim to consolidate the knowledge about the neurological manifestations of WD and present the pathophysiology of each neurological manifestation of the disease. We will give a brief definition, the provenance, and the pathophysiology of the neurological conditions. We collected data from the National Library of Medicine (PubMed) using regular keywords and medical subject headings. Studies were selected applying the following inclusion/exclusion criteria: (1) studies that used exclusively human subjects, (2) papers published in English, and (3) papers from 1990 onward. The exclusion criteria were (1) studies that used animals, (2) papers not published in English, and (3) papers published before 1990. Additional studies were included via reference lists of identified papers and related articles featured in PubMed and Google Scholar. Copper toxicity is the principal factor for brain degeneration seen in WD. Parkinsonism seen in WD has been associated with a nigrostriatal dopaminergic deficit. Resting tremor may have the same pathophysiology as parkinsonism. Action tremor is related to an accumulation of copper in the cerebellum's vermis and hemispheres. At the same time, essential tremor can be explained due to affection of the dentate nucleus. Choreoathetosis is produced due to increased activity of the direct pathway. We did not find specifically associated pathophysiology related to dysarthria. We assume that multiple parts of the brain are involved in that problem. Putamen nucleus damage is the leading cause that explains dystonia seen in WD along with the globus palidus. We did not find a specific localization for seizures in WD, but the pathology seems to be related to decreased levels of B6 and direct toxicity of copper on the brain.

8.
Cureus ; 12(9): e10741, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33173654

ABSTRACT

Multiple system atrophy (MSA) is a rare, progressive, fatal, neurodegenerative disorder. There are two main types: the parkinsonian type (MSA-P) and cerebellar type (MSA-C). The disease usually presents with genitourinary dysfunction, orthostatic hypotension, and rapid eye movement (REM) sleep behavior disorder. Patients rapidly develop balance, speech, and coordination abnormalities. We present a review of the clinical picture and the actualized treatment modalities of the MSA cerebellar type. For the study methods, a PubMed search was done using the following medical subject headings (MeSH) terms: "multiple system atrophy/therapy". Inclusion criteria included studies in English, full papers, human studies, and publications in the last 30 years. Case reports and series were excluded. A total of 157 papers were extracted after applying the inclusion and exclusion criteria, and 41 papers were included for the discussion of this review. This review underlines the therapeutic strategies as well as the clinical picture of multiple system atrophy, and how MSA-C and MSA-P differ from each other. We discussed this review in four topics: ataxia, autonomic dysfunction (neurogenic orthostatic hypotension and urinary disorders), parkinsonism, and REM sleep disorder. In conclusion, the treatment of MSA-C is mainly symptomatic; there are not many studies on MSA-C. The ataxic component and fewer parkinsonian symptoms are the main difference of MSA-C as opposed to MSA-P.

9.
Cureus ; 12(12): e12339, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33520535

ABSTRACT

Stroke is a leading cause of death, disability, and dementia worldwide. Strokes can be divided into ischemic strokes and hemorrhagic strokes. At the moment, tissue plasminogen activator (tPA) is the only FDA-approved drug for ischemic stroke. Minocycline (MC) and Magnesium (Mg) are promising therapies for ischemic stroke, especially in the pre-hospital setting. These drugs are readily available, inexpensive, and generally safe. We decided to investigate these drugs' neuroprotective effects in treating ischemic stroke in the acute and chronic setting. We conducted a systematic review of the published literature on MC and Mg's functional outcome in ischemic stroke. This paper's methodology included only clinical trials published in the last 15 years, using PubMed as a database. The systematic review demonstrated that MC infusion in the pre-hospital and hospital setting improved functional outcomes and disability scores. Furthermore, MC also decreased matrix metalloproteinase 9 (MMP-9) levels. MC might have a more significant effect on men than women because different molecular pathways of cerebral ischemia seem to be involved between both genders. The systematic review showed that patients with ischemic stroke did not benefit from magnesium sulfate infusion in the pre-hospital and hospital setting. Nevertheless, patients with lacunar strokes and patients who supplemented their meals with potassium-magnesium salt in the diet had better functional outcomes. Future studies would need a more significant sample of participants and a better selection to increase the study's power and avoid selection bias, respectively. Further publications could benefit from subcategorizing strokes and investigating the gender role in stroke treatment. These directives could give a more robust conclusion regarding the neuroprotective effects of these drugs.

10.
Cureus ; 12(12): e11995, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33437550

ABSTRACT

Stiff-person syndrome (SPS) is a rare and disabling central nervous system disorder with no satisfactory treatment. Muscle rigidity, sporadic muscle spasms, and chronic muscle pain characterize SPS. SPS is strongly correlated with autoimmune diseases, and it is usual to find high titers of antibodies against acid decarboxylase (GAD65). Due to its highly disabling nature and complicated treatment, we aim to create a treatment protocol through a narrative review of currently available treatments that show efficacy. We expect to facilitate management based on treatment responses ranging from first-line medication to refractory medication. We conducted a medical subject heading (MeSH) strategy. We used the term SPS with the subheading treatment: "Stiff-Person Syndrome/Therapy" [MeSH]. An initial data gathering of 270 papers came out with the initial research. After using the inclusion criteria, we had 159 articles. We excluded 31 papers for being either systematic reviews, literature reviews, or meta-analysis. From the 128 remaining articles, we excluded another 104 papers because the extraction of the data was not possible or the study outcome did not meet our demands. There are two main treatments for SPS: GABAergic (gamma-aminobutyric acid) therapy and immunotherapy. For treatment, we suggest starting with benzodiazepines as first-line treatment. We recommend adding levetiracetam or pregabalin if symptoms persist. As second-line therapy, we recommend oral baclofen over rituximab and tacrolimus. We also suggest rituximab over tacrolimus. For patients with refractory treatment, we can use intrathecal baclofen, intravenous immunoglobulin (IVIG), or plasmapheresis. We conclude that intrathecal baclofen and IVIG are more effective than plasmapheresis in patients with refractory symptoms. Propofol may be used as a bridge - temporary therapy before initiating a permanent treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...