Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 344: 140314, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769914

ABSTRACT

This work demonstrates a simple and scalable methodology for the binder-free direct growth of Mo-doped NiFe-layered double hydroxides on a nickel substrate via an electrodeposition route at room temperature. A three-dimensional (3D) nanosheet array morphology of the electrocatalyst provides immense electrochemical surface area as well as abundant catalytically active sites. Mo incorporation in the NiFe-LDH plays a crucial role in regulating the catalytic activity of oxygen evolution reaction (OER). The prepared electrocatalyst exhibited low overpotential (i.e., 230 mV) at 30 mA cm-2 for OER in an alkaline electrolyte (i.e., 1 M KOH). Furthermore, the optimized Mo-doped NiFe-LDH electrode was used as an anode in a laboratory-scale in situ single cell test system for alkaline water electrolysis at 80 °C with a continuous flow of 30 wt% KOH, and it shows the efficient electrochemical performance with a lower cell voltage of 1.80 V at a current density of 400 mA cm-2. In addition, an admirable long-term cell durability is also demonstrated by the cell for 24 h. This work encourages new designs and further development of electrode material for alkaline water electrolysis on a commercial scale.


Subject(s)
Electrolysis , Water , Electroplating , Electrodes , Oxygen
2.
Dalton Trans ; 51(15): 6027-6035, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35352748

ABSTRACT

Developing efficient, low-cost, and environment-friendly electrocatalysts for hydrogen generation is critical for lowering energy usage in electrochemical water splitting. Moreover, for commercialization, fabricating cost-efficient, earth-abundant electrocatalysts with superior characteristics is of urgent need. Towards this endeavor, we report the synthesis of PANI-MnMoO4 nanocomposites using a hydrothermal approach and an in situ polymerization method with various concentrations of MnMoO4. The fabricated nanocomposite electrocatalyst exhibits bifunctional electrocatalytic activity towards the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) at a lower overpotential of 410 mV at 30 mA cm-2 and 155 mV at 10 mA cm-2, respectively in an alkaline electrolyte. Furthermore, while showing overall water splitting (OWS) performance, the optimized PM-10 (PANI-MnMoO4) electrode reveals the most outstanding OWS performance with a lower cell voltage of 1.65 V (vs. RHE) at a current density of 50 mA cm-2 with an excellent long-term cell resilience of 24 h.

3.
Polymers (Basel) ; 14(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35160499

ABSTRACT

Today's world requires high-performance energy storage devices such as hybrid supercapacitors (HSc), which play an important role in the modern electronic market because supercapacitors (Sc) show better electrical properties for electronics devices. In the last few years, the scientific community has focused on the coupling of Sc and battery-type materials to improve energy and power density. Recently, various hybrid electrode materials have been reported in the literature; out of these, coordination polymers such as metal-organic frameworks (MOFs) are highly porous, stable, and widely explored for various applications. The poor conductivity of classical MOFs restricts their applications. The composite of MOFs with highly porous graphene (G), graphene oxide (GO), or reduced graphene oxide (rGO) nanomaterials is a promising strategy in the field of electrochemical applications. In this review, we have discussed the strategy, device structure, and function of the MOFs/G, MOFs/GO, and MOFs/rGO nanocomposites on Sc. The structural, morphological, and electrochemical performance of coordination polymers composites towards Sc application has been discussed. The reported results indicate the considerable improvement in the structural, surface morphological, and electrochemical performance of the Sc due to their positive synergistic effect. Finally, we focused on the recent development in preparation methods optimization, and the opportunities for MOFs/G based nanomaterials as electrode materials for energy storage applications have been discussed in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...