Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
HLA ; 103(6): e15586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932739

ABSTRACT

Solid phase detection and identification of HLA antibodies in kidney transplantation currently relies on single antigen bead (Luminex®) assays, which is more sensitive than the previously used enzyme-linked immunosorbent assays (ELISA). To evaluate the impact of more sensitive HLA testing on antibody-mediated rejection (AMR) occurrence and allograft survival, we analysed 1818 renal allograft recipients transplanted between March 2004 and May 2021. In 2008, solid phase testing switched from ELISA to Luminex. We included 393 (21.6%) transplantations before and 1425 (78.4%) transplantations after transition from ELISA- to Luminex-based testing. For this study, bio-banked ELISA era samples were tested retrospectively with Luminex. Significantly less pretransplant DSA were found in patients transplanted with pre-existing HLA antibodies in the Luminex (109/387) versus the ELISA period (43/90) (28% vs. 48%, p < 0.01). Throughout histological follow-up, 169 of 1818 (9.3%) patients developed AMR. After implementing Luminex-based testing, the rate of AMR significantly decreased (p = 0.003). However, incidence of graft failure did not significantly differ between both eras. In conclusion, less patients with pretransplant DSA were transplanted since the implementation of Luminex HLA testing. Transition from ELISA- to Luminex-based HLA testing was associated with a significant decrease in AMR occurrence post-transplantation. Since the decline of AMR did not translate into improved graft survival, Luminex-based testing has the added value of preventing low-risk AMR cases. Therefore, Luminex' high sensitivity must be balanced against waiting time for a suitable organ.


Subject(s)
Graft Rejection , Graft Survival , HLA Antigens , Histocompatibility Testing , Isoantibodies , Kidney Transplantation , Humans , Graft Rejection/immunology , HLA Antigens/immunology , Male , Isoantibodies/blood , Isoantibodies/immunology , Female , Middle Aged , Histocompatibility Testing/methods , Retrospective Studies , Adult , Enzyme-Linked Immunosorbent Assay , Aged
3.
Front Immunol ; 15: 1377535, 2024.
Article in English | MEDLINE | ID: mdl-38601147

ABSTRACT

Introduction: We investigated the potential role of HLA molecular mismatches (MM) in achieving stable chimerism, allowing for donor-specific tolerance in patients undergoing combined living donor kidney and hematopoietic stem cell transplantation (HSCT). Methods: All patients with available DNA samples (N=32) who participated in a phase 2 clinical trial (NCT00498160) where they received an HLA mismatched co-transplantation of living donor kidney and facilitating cell-enriched HSCT were included in this study. High-resolution HLA genotyping data were used to calculate HLA amino acid mismatches (AAMM), Eplet MM, three-dimensional electrostatic mismatch scores (EMS-3D), PIRCHE scores, HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence MM, and KIR ligands MM between the donor and recipient in both directions. HLA MM were analyzed to test for correlation with the development of chimerism, graft vs. host disease (GvHD), de novo DSA, and graft rejection. Results: Follow-up time of this cohort was 6-13.5 years. Of the 32 patients, 26 developed high-level donor or mixed stable chimerism, followed by complete withdrawal of immunosuppression (IS) in 25 patients. The remaining six of the 32 patients had transient chimerism or no engraftment and were maintained on IS (On-IS). In host versus graft direction, a trend toward higher median number of HLA-DRB1 MM scores was seen in patients On-IS compared to patients with high-level donor/mixed chimerism, using any of the HLA MM modalities; however, initial statistical significance was observed only for the EMS-3D score (0.45 [IQR, 0.30-0.61] vs. 0.24 [IQR, 0.18-0.36], respectively; p=0.036), which was lost when applying the Bonferroni correction. No statistically significant differences between the two groups were observed for AAMM, EMS-3D, Eplet MM, and PIRCHE-II scores calculated in graft versus host direction. No associations were found between development of chimerism and GvHD and non-permissive HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence, and KIR ligands MM. Conclusion: Our results suggest an association between HLA-DRB1 molecular mismatches and achieving stable chimerism, particularly when electrostatic quality of the mismatch is considered. The non-permissive HLA-DPB1 T-cell epitope group, HLA-B leader sequence, and KIR ligands MM do not predict chimerism and GvHD in this combined kidney/HSCT transplant patient cohort. Further work is needed to validate our findings. Clinical trial registration: https://clinicaltrials.gov/study/NCT00498160, identifier NCT00498160.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Living Donors , Epitopes, T-Lymphocyte , HLA-DRB1 Chains , Histocompatibility Testing , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/etiology , Kidney , HLA-B Antigens
4.
HLA ; 103(4): e15455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575370

ABSTRACT

Prolonging the lifespan of transplanted organs is critical to combat the shortage of this life-saving resource. Chronic rejection, with irreversible demise of the allograft, is often caused by the development of donor-specific HLA antibodies. Currently, enumerating molecular (amino acid) mismatches between recipient and donor is promoted to identify patients at higher risk of developing HLA antibodies, for use in organ allocation, and immunosuppression-minimization strategies. We have counseled against the incorporation of such approaches into clinical use and hypothesized that not all molecular mismatches equally contribute to generation of donor-specific immune responses. Herein, we document statistical shortcomings in previous study design: for example, use of individuals who lack the ability to generate donor-specific-antibodies (HLA identical) as part of the negative cohort. We provide experimental evidence, using CRISPR-Cas9-edited cells, to rebut the claim that the HLAMatchmaker eplets represent "functional epitopes." We further used unique sub-cohorts of patients, those receiving an allograft with two HLA-DQ mismatches yet developing antibodies only to one mismatch (2MM1DSA), to interrogate differential immunogenicity. Our results demonstrate that mismatches of DQα05-heterodimers exhibit the highest immunogenicity. Additionally, we demonstrate that the DQα chain critically contributes to the overall qualities of DQ molecules. Lastly, our data proposes that an augmented risk to develop donor-specific HLA-DQ antibodies is dependent on qualitative (evolutionary and functional) divergence between recipient and donor, rather than the mere number of molecular mismatches. Overall, we propose an immunological mechanistic rationale to explain differential HLA-DQ immunogenicity, with potential ramifications for other pathological processes such as autoimmunity and infections.


Subject(s)
Isoantibodies , Organ Transplantation , Humans , Alleles , Histocompatibility Testing , HLA-DQ Antigens/genetics , Graft Rejection/genetics
6.
Am J Transplant ; 24(3): 338-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38032300

ABSTRACT

The XVI-th Banff Meeting for Allograft Pathology was held at Banff, Alberta, Canada, from 19th to 23rd September 2022, as a joint meeting with the Canadian Society of Transplantation. To mark the 30th anniversary of the first Banff Classification, premeeting discussions were held on the past, present, and future of the Banff Classification. This report is a summary of the meeting highlights that were most important in terms of their effect on the Classification, including discussions around microvascular inflammation and biopsy-based transcript analysis for diagnosis. In a postmeeting survey, agreement was reached on the delineation of the following phenotypes: (1) "Probable antibody-mediated rejection (AMR)," which represents donor-specific antibodies (DSA)-positive cases with some histologic features of AMR but below current thresholds for a definitive AMR diagnosis; and (2) "Microvascular inflammation, DSA-negative and C4d-negative," a phenotype of unclear cause requiring further study, which represents cases with microvascular inflammation not explained by DSA. Although biopsy-based transcript diagnostics are considered promising and remain an integral part of the Banff Classification (limited to diagnosis of AMR), further work needs to be done to agree on the exact classifiers, thresholds, and clinical context of use.


Subject(s)
Kidney Transplantation , Humans , Complement C4b , Canada , Kidney/pathology , Inflammation/pathology , Isoantibodies , Biopsy
7.
J Am Soc Nephrol ; 35(3): 347-360, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38147137

ABSTRACT

SIGNIFICANCE STATEMENT: There is no standardized desensitization regimen for kidney transplant candidates. CD38, expressed by plasma cells, could be targeted for desensitization to deplete plasma cells producing alloantibodies and donor-specific antibodies. Few studies and case reports are available regarding the use of CD38 antibodies for desensitization in patients awaiting kidney transplant. This study shows that isatuximab, a CD38-targeting therapy, was well tolerated in kidney transplant candidates, with a durable decrease in anti-HLA antibodies and partial desensitization activity. The short treatment period and long follow-up of this study allowed for the understanding of the mechanism and timing for any antibody rebound. Isatuximab could be further investigated as an option for adjunct therapy to existing desensitization for patients on the kidney transplant waitlist. BACKGROUND: Patients with calculated panel reactive antibody (cPRA) ≥80.00%, particularly those with cPRA ≥99.90%, are considered highly sensitized and underserved by the Kidney Allocation System. Desensitization removes circulating reactive antibodies and/or suppresses antibody production to increase the chances of a negative crossmatch. CD38 is expressed highly on plasma cells, thus is a potential target for desensitization. METHODS: This was an open-label single-arm phase 1/2 study investigating the safety, pharmacokinetics, and preliminary efficacy of isatuximab in patients awaiting kidney transplantation. There were two cohorts, cohorts A and B, which enrolled cPRA ≥99.90% and 80.00% to <99.90%, respectively. RESULTS: Twenty-three patients (12 cohort A, 11 cohort B) received isatuximab 10 mg/kg weekly for 4 weeks then every 2 weeks for 8 weeks. Isatuximab was well tolerated with pharmacokinetic and pharmacodynamic profiles that indicated similar exposure to multiple myeloma trials. It resulted in decreases in CD38 + plasmablasts, plasma cells, and NK cells and significant reductions in HLA-specific IgG-producing memory B cells. Overall response rate, on the basis of a predefined composite desensitization end point, was 83.3% and 81.8% in cohorts A and B. Most responders had decreases in anti-HLA antibodies that were maintained for 26 weeks after the last dose. Overall, cPRA values were minimally affected, however, with only 9/23 patients (39%) having cPRA decreases to target levels. By study cutoff (median follow-up of 68 weeks), six patients received transplant offers, of which four were accepted. CONCLUSIONS: In this open-label trial, isatuximab was well tolerated and resulted in a durable decrease in anti-HLA antibodies with partial desensitization activity. CLINICAL TRIAL REGISTRATION NUMBER: NCT04294459 .


Subject(s)
Kidney Transplantation , Humans , Antibodies, Monoclonal, Humanized , Kidney , Isoantibodies , Antilymphocyte Serum
8.
Curr Opin Organ Transplant ; 28(5): 333-339, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37219535

ABSTRACT

PURPOSE OF REVIEW: De novo HLA-DQ antibodies are the most frequently observed after solid-organ allotransplantation; and are associated with the worse adverse graft outcomes compared with all other HLA antibodies. However, the biological explanation for this observation is not yet known. Herein, we examine unique characteristics of alloimmunity directed specifically against HLA-DQ molecules. RECENT FINDINGS: While investigators attempted to decipher functional properties of HLA class II antigens that may explain their immunogenicity and pathogenicity, most early studies focused on the more expressed molecule - HLA-DR. We here summarize up-to-date literature documenting specific features of HLA-DQ, as compared to other class II HLA antigens. Structural and cell-surface expression differences have been noted on various cell types. Some evidence suggests variations in antigen-presenting function and intracellular activation pathways after antigen/antibody interaction. SUMMARY: The clinical effects of donor-recipient incompatibility at HLA-DQ, the risk of generating de novo antibodies leading to rejection, and the inferior graft outcomes indicate increased immunogenicity and pathogenicity that is unique to this HLA antigen. Clearly, knowledge generated for HLA-DR cannot be applied interchangeably. Deeper understanding of features unique to HLA-DQ may support the generation of targeted preventive-therapeutic strategies and ultimately improve solid-organ transplant outcomes.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Isoantibodies , HLA-DQ Antigens , Histocompatibility Testing , HLA-DR Antigens/chemistry , Graft Rejection/prevention & control
10.
Am J Transplant ; 23(1): 115-132, 2023 01.
Article in English | MEDLINE | ID: mdl-36695614

ABSTRACT

Although anti-HLA (Human Leukocyte Antigen) donor-specific antibodies (DSAs) are commonly measured in clinical practice and their relationship with transplant outcome is well established, clinical recommendations for anti-HLA antibody assessment are sparse. Supported by a careful and critical review of the current literature performed by the Sensitization in Transplantation: Assessment of Risk 2022 working group, this consensus report provides clinical practice recommendations in kidney, heart, lung, and liver transplantation based on expert assessment of quality and strength of evidence. The recommendations address 3 major clinical problems in transplantation and include guidance regarding posttransplant DSA assessment and application to diagnostics, prognostics, and therapeutics: (1) the clinical implications of positive posttransplant DSA detection according to DSA status (ie, preformed or de novo), (2) the relevance of posttransplant DSA assessment for precision diagnosis of antibody-mediated rejection and for treatment management, and (3) the relevance of posttransplant DSA for allograft prognosis and risk stratification. This consensus report also highlights gaps in current knowledge and provides directions for clinical investigations and trials in the future that will further refine the clinical utility of posttransplant DSA assessment, leading to improved transplant management and patient care.


Subject(s)
Isoantibodies , Kidney Transplantation , Humans , Consensus , HLA Antigens , Tissue Donors , Histocompatibility Antigens Class II , Graft Rejection/diagnosis , Graft Rejection/etiology , Histocompatibility Testing
11.
Am J Transplant ; 23(1): 133-149, 2023 01.
Article in English | MEDLINE | ID: mdl-36695615

ABSTRACT

The Sensitization in Transplantation: Assessment of Risk workgroup is a collaborative effort of the American Society of Transplantation and the American Society of Histocompatibility and Immunogenetics that aims at providing recommendations for clinical testing, highlights gaps in current knowledge, and proposes areas for further research to enhance histocompatibility testing in support of solid organ transplantation. This report provides updates on topics discussed by the previous Sensitization in Transplantation: Assessment of Risk working groups and introduces 2 areas of exploration: non-human leukocyte antigen antibodies and utilization of human leukocyte antigen antibody testing measurement to evaluate the efficacy of antibody-removal therapies.


Subject(s)
Organ Transplantation , Organ Transplantation/adverse effects , Risk Factors , Histocompatibility , Histocompatibility Testing , Group Processes , Graft Rejection/etiology , Isoantibodies
12.
Am J Transplant ; 23(1): 45-54, 2023 01.
Article in English | MEDLINE | ID: mdl-36695620

ABSTRACT

The demand for donors' kidneys continues to increase amid a shortage of available donors. Managing policies to thoughtfully allocate this scarce resource is a complex process. Although human leukocyte antigen (HLA) matching has been shown to prolong graft survival, its relative contribution to allocation schemes is empirically compromised owing to competing priorities. We explored using a new metric, Matched Donor Potential (MDP), to facilitate improved HLA matching while promoting equity. We interrogated all active kidney waitlist patients (N = 164 427), their corresponding unacceptable antigen files, and all effective donors in the Scientific Registry of Transplant Recipients (January 1, 2016-December 31, 2017). Cause-specific hazard functions were evaluated to assess the potential impact of the MDP metric on deceased donor transplant access rates for all candidates. Access was affected by ethnicity, blood group type, and calculated Panel Reactive Antibody (cPRA). Importantly, we show that access to transplantation is influenced by the patient's own HLA makeup regardless of their ethnicity and by the HLA makeup of effective donors. The MDP metric demonstrates a high association with access to transplantation. Adjusting Cox models to include this new metric resulted in improved access to kidney transplantation for waitlist candidates of minority heritage while significantly promoting HLA matching. Thus, the MDP metric accounts for balanced, equitable organ allocation algorithms.


Subject(s)
Kidney Transplantation , Tissue and Organ Procurement , Humans , Kidney Transplantation/methods , Tissue Donors , Kidney , HLA Antigens , Graft Survival , Histocompatibility Testing/methods
13.
Transpl Infect Dis ; 25(1): e13993, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36413505

ABSTRACT

BACKGROUND: Reduction of immunosuppression (IS) upon detection of Polyomavirus (BK) viremia is widely used to prevent BK virus nephropathy. This retrospective case-control study assesses the frequency of de novo donor-specific antibodies (dnDSA) in renal transplant recipients with IS modulation due to BK viremia and the associated risk of antibody mediated rejection. METHODS: Our cohort included recipients of kidney transplantation between 2007 and 2017 with clinical, HLA antibody, and biopsy data. BK positivity was defined as viremia >10 000 c/ml or biopsy proven BK nephropathy. A total of 190 BK cases matched our inclusion criteria, each case was matched with two controls based on gender, donor type, and transplant within 1 year (N = 396). RESULTS: Despite lower number of HLA antigen mismatches (mean = 3.5 vs. 4.4, p < .001), dnDSA rates were higher in BK cases than in control group (22.1% vs. 13.9%, p = .02), with the majority detected following IS reduction for BK infection, and arising earlier posttransplant compared with no BK infection (294d vs. 434d, p < .001). Antibody mediated rejection rates were similar between cases and controls (8.9% and 8.3%, respectively), but rejection was more likely to occur earlier posttransplant in the BK cases (354d vs. 602d, p = .03). CONCLUSION: Our data suggest a link between IS reduction and the generation of dnDSA and/or rejection, supporting close monitoring for DSA in patients with reduced IS due to BK infection given their increased risk to develop dnDSA.


Subject(s)
BK Virus , Kidney Transplantation , Polyomavirus Infections , Tumor Virus Infections , Humans , Kidney Transplantation/adverse effects , Retrospective Studies , Case-Control Studies , Viremia , Immunosuppression Therapy/adverse effects , Transplant Recipients , Graft Rejection/prevention & control
14.
Transplantation ; 107(3): 605-615, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36163639

ABSTRACT

In recent years, there have been calls for implementation of "epitope matching" in deceased-donor organ allocation policies (later changed to "eplet matching"). Emerging data indeed support the use of molecular mismatch load analysis in specific patient groups, with the objective of posttransplant stratification into different treatment arms. For this purpose, the expectation is to statistically categorize patients as low- or high-immune-risk. Importantly, these patients will continue to be monitored' and their risk category, as well as their management, can be adjusted according to on-going findings. However, when discussing deceased donor organ allocation and matching algorithms, where the decision is not modifiable and has lasting impact on outcomes, the situation is fundamentally different. The goal of changing allocation schemes is to achieve the best possible HLA compatibility between donor and recipient. Immunologically speaking, this is a very different objective. For this purpose, the specific interplay of immunogenicity between the donor and any potential recipient must be understood. In seeking compatibility, the aim is not to redefine matching but to identify those mismatches that are "permissible" or' in other words, less immunogenic. In our eagerness to improve transplant outcome, unfortunately, we have conflated the hype with the hope. Terminology is used improperly, and new terms are created in the process with no sufficient support. Here, we call for a cautious evaluation of baseline assumptions and a critical review of the evidence to minimize unintended consequences.


Subject(s)
Tissue Donors , Transplants , Humans , Histocompatibility Testing , Epitopes , HLA Antigens , Graft Rejection
15.
J Am Soc Nephrol ; 33(12): 2293-2305, 2022 12.
Article in English | MEDLINE | ID: mdl-36450598

ABSTRACT

BACKGROUND: In single-center studies, HLA-DQ mismatches stimulate the most pathogenic donor-specific antibodies. However, because of limitations of transplant registries, this cannot be directly confirmed with registry-based analyses. METHODS: We evaluated patients in the Scientific Registry of Transplant Recipients who were relisted after renal graft failure with new, unacceptable antigens corresponding to the HLA typing of their previous donor (UA-PD) as a proxy for donor-specific antibodies. Linear regression was applied to estimate the effects of HLA mismatches on UA-PD and the effects of UA-PD on calculated panel reactive antibody (cPRA) values for 4867 kidney recipients from 2010 to 2021. RESULTS: Each additional HLA-DQ mismatch increased the probability of UA-PD by 25.2% among deceased donor transplant recipients and by 28.9% among living donor transplant recipients, significantly more than all other HLA loci (P<0.05). HLA-DQ UA-PD increased cPRA by 29.0% in living donor transplant recipients and by 23.5% in deceased donor transplant recipients, significantly more than all loci except for HLA-A in deceased donor transplant recipients (23.1%). African American deceased donor transplant recipients were significantly more likely than Hispanic and White recipients to develop HLA-DQ UA-PD; among living donor transplant recipients, African American or Hispanic recipients were significantly more likely to do so compared with White recipients. Models evaluating interactions between HLA-DR/DQ mismatches revealed largely independent effects of HLA-DQ mismatches on HLA-DQ UA-PD. CONCLUSIONS: HLA-DQ mismatches had the strongest associations with UA-PD, an effect that was greatest in African American and Hispanic recipients. cPRA increases with HLA-DQ UA-PD were equivalent or larger than any other HLA locus. This suggests a need to consider the effects of HLA-DQ in kidney allocation.


Subject(s)
Transplants , Humans , Transplant Recipients , Antibodies , Living Donors , HLA-DQ Antigens/genetics
16.
HLA ; 100(5): 457-468, 2022 11.
Article in English | MEDLINE | ID: mdl-35986896

ABSTRACT

Luminex single antigen bead (SAB) testing has increased the sensitivity and specificity of accurately identifying HLA antibodies, in support of all organ transplantation. However, as described in manufacturers' recommendation, the output of the assay, using mean fluorescence intensity (MFI) units, is only semi-quantitative. Therefore, the ability to use MFI values to compare between different assays, to accurately guide clinical practice, or be used as an endpoint measure in clinical trials, is limited. To improve potential quantification, one must circumvent inherent limitations of SAB assays such as interference and saturation phenomena. In this review, we discuss how measurement of pre-transplant serum dilutions can be used to determine unacceptable antigens for wait-listing, determine the likelihood for successful HLA antibody reduction with desensitization, and compare degree of HLA (in)compatibility among various living donors. We also discuss how serum dilutions are optimal for measuring and comparing the efficacy of antibody depletion therapies for desensitization or antibody mediated rejection treatment post-transplant. Historically, one of the main criticisms for the use of serum dilutions and titer has been the potential labor and cost associated with additional testing. Here, we show how only one or two dilutions can add major value in most circumstances. In summary, the practical use of serum dilutions and titer determination are important methods that can be used before and after transplantation of all organs to quantify antibody accurately and reliably in routine practice and in clinical trials.


Subject(s)
HLA Antigens , Organ Transplantation , Alleles , Antibodies , Graft Rejection , Histocompatibility Testing/methods , Humans , Isoantibodies
17.
Open Forum Infect Dis ; 9(3): ofac027, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35198645

ABSTRACT

BACKGROUND: While several demographic and clinical correlates of coronavirus disease 2019 (COVID-19) outcome have been identified, their relationship to virological and immunological parameters remains poorly defined. METHODS: To address this, we performed longitudinal collection of nasopharyngeal swabs and blood samples from a cohort of 58 hospitalized adults with COVID-19. Samples were assessed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load, viral genotype, viral diversity, and antibody titer. Demographic and clinical information, including patient blood tests and several composite measures of disease severity, was extracted from electronic health records. RESULTS: Several factors, including male sex, higher age, higher body mass index, higher 4C Mortality score, and elevated lactate dehydrogenase levels, were associated with intensive care unit admission. Of all measured parameters, only the retrospectively calculated median Deterioration Index score was significantly associated with death. While quantitative polymerase chain reaction cycle threshold (Ct) values and genotype of SARS-CoV-2 were not significantly associated with outcome, Ct value did correlate positively with C-reactive protein levels and negatively with D-dimer, lymphocyte count, and antibody titer. Intrahost viral genetic diversity remained constant through the disease course and resulted in changes in viral genotype in some participants. CONCLUSIONS: Ultimately, these results suggest that worse outcomes are driven by immune dysfunction rather than by viral load and that SARS-CoV-2 evolution in hospital settings is relatively constant over time.

18.
Hum Immunol ; 83(3): 233-240, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35067388

ABSTRACT

Human Leukocyte Antigens (HLA) matching at the serological level used to serve as the measure of histocompatibility between organ donors and recipients. With advancements in HLA typing methods more precise HLA mismatch assessment tools were developed to measure dissimilarities at the molecular level, collectively referred to as Molecular Mismatch load analysis tools. Currently, several software are aimed at deciphering the dissimilarities using somewhat different immunologic rationales. Our goal, in this review is to provide a basic overview of the different computational approaches, provide clinical cases to contextualize concerns regarding the lack of assessment of immunogenicity, and present our personal view regarding the gaps and the needs of our field.


Subject(s)
Graft Survival , Histocompatibility , HLA Antigens/genetics , Histocompatibility Testing/methods , Humans , Tissue Donors
20.
Kidney Int ; 100(5): 1012-1022, 2021 11.
Article in English | MEDLINE | ID: mdl-34246656

ABSTRACT

The weight of human leukocyte antigen (HLA) matching in kidney allocation algorithms, especially in the United States, has been devalued in a stepwise manner, supported by the introduction of modern immunosuppression. The intent was further to reduce the observed ethnic/racial disparity, as data emerged associating HLA matching with decreased access to transplantation for African American patients. In recent years, it has been increasingly recognized that a leading cause of graft loss is chronic antibody-mediated rejection, attributed to the development of de novo antibodies against mismatched donor HLA expressed on the graft. These antibodies are most frequently against donor HLA-DQ molecules. Beyond their impact on graft survival, generation of de novo donor-specific HLA antibodies also leads to increased sensitization, as measured by panel-reactive antibody metrics. Consequently, access to transplantation for patients returning to the waitlist in need of a second transplant is compromised. Herein, we address the implications of reduced HLA matching policies in kidney allocation. We highlight the observed diminished outcome data, the significant financial burden, the long-term health consequences, and, more important, the unintended consequences. We further provide recommendations to examine the impact of donor-recipient HLA class II and specifically HLA-DQα1ß1 mismatching, focusing on collection of appropriate data, application of creative simulation approaches, and reconsideration of best practices to reduce inequalities while optimizing patient outcomes.


Subject(s)
Kidney Transplantation , Graft Rejection/prevention & control , Graft Survival , HLA Antigens , HLA-DQ Antigens , Histocompatibility Testing , Humans , Isoantibodies , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...