Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(8): 5173-5185, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38358388

ABSTRACT

Aqueous redox flow batteries (RFBs) are attractive candidates for low-cost, grid-scale storage of energy from renewable sources. Quinoxaline derivatives represent a promising but underexplored class of charge-storing materials on account of poor chemical stability in prior studies (with capacity fade rates >20%/day). Here, we establish that 2,3-dimethylquinoxaline-6-carboxylic acid (DMeQUIC) is vulnerable to tautomerization in its reduced form under alkaline conditions. We obtain kinetic rate constants for tautomerization by applying Bayesian inference to ultraviolet-visible spectroscopic data from operating flow cells and show that these rate constants quantitatively account for capacity fade measured in cycled cells. We use density functional theory (DFT) modeling to identify structural and chemical predictors of tautomerization resistance and demonstrate that they qualitatively explain stability trends for several commercially available and synthesized derivatives. Among these, quinoxaline-2-carboxylic acid shows a dramatic increase in stability over DMeQUIC and does not exhibit capacity fade in mixed symmetric cell cycling. The molecular design principles identified in this work set the stage for further development of quinoxalines in practical, aqueous organic RFBs.

2.
Macromolecules ; 55(24): 10821-10830, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-37396500

ABSTRACT

Catalyst-transfer polymerization (CTP) is a chain-growth method used to synthesize conjugated polymers. Although CTP works well for most donor-type monomers, the polymerization stalls with thieno[3,2-b]thiophene when using Ni catalysts. Previous reports have rationalized this result by suggesting that the catalyst is trapped in a Ni0 π-complex with the highly electron-rich arene. In this study, evidence is provided that the catalyst trap is more likely a NiII complex that arises from oxidative insertion of Ni0 into the C-S bonds of thieno[3,2-b]thiophene. This result is consistent with the known reactivity of Ni0 complexes toward S-heteroarenes and is supported herein by 31P nuclear magnetic resonance spectra acquired in situ, as well as data collected from small-molecule model reactions and density-functional theory simulations of the polymerization. We propose that this C-S insertion pathway and related off-cycle reactions may be relevant to understanding or enabling the CTP of other monomers with fused thiophenes.

3.
ACS Macro Lett ; 10(1): 41-53, 2021 01 19.
Article in English | MEDLINE | ID: mdl-35548997

ABSTRACT

Although Staudinger realized makromoleküles had enormous potential, he likely did not anticipate the consequences of their universal adoption. With 6.3 billion metric tons of plastic waste now contaminating our land, water, and air, we are facing an environmental and public health crisis. Synthetic polymer chemists can help create a more sustainable future, but are we on the right path to do so? Herein, a comprehensive literature survey reveals that there has been an increased focus on "sustainable polymers" in recent years, but most papers focus on biomass-derived feedstocks. In contrast, there is less focus on polymer end-of-life fates. Moving forward, we suggest an increased emphasis on chemical recycling, which sees value in plastic waste and promotes a closed-loop plastic economy. To help keep us on the path to sustainability, the synthetic polymer community should routinely seek the systems perspective offered by life cycle assessment.


Subject(s)
Anniversaries and Special Events , Polymers , Plastics , Recycling
4.
Chem Commun (Camb) ; 53(55): 7728-7731, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28594020

ABSTRACT

WS(S2)(S2CNEt2)2 has been successfully employed in the aerosol-assisted chemical vapor deposition of WS2 at temperatures above 350 °C. This precursor was found to decompose primarily through the loss of H2S, CS2, and SCNEt. The WS2 deposits were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The deposits exhibited plate-like structures growing vertically from the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...