Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(38): 386001, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23988438

ABSTRACT

The magnetothermal behavior of antiferromagnetic IrMn layers of different thickness (3, 6, 10 nm) has been studied by exploiting the exchange coupling with a ferromagnetic 5 nm-thick NiFe layer. A procedure has been devised for the measurement of the magnetization of the NiFe/IrMn bilayers as a function of temperature and time at different values of an external magnetic field, Hinv, antiparallel to the unidirectional exchange anisotropy. This analysis allows one to probe the effective distribution of anisotropy energy barriers of the antiferromagnetic phase, as sensed by the ferromagnetic layer. Two magnetic regimes have been distinguished. At temperature T < 100 K, the interfacial IrMn spins are frozen in a glassy state and are collectively involved in the exchange coupling with the NiFe spins. At T âˆ¼ 100 K the collective state breaks up; thus, above this temperature, only the interfacial IrMn spins which are tightly polarized by the IrMn nanograins, forming the bulk of the layer, are effectively involved in the exchange coupling mechanism. Due to that, for T > 100 K the exchange coupling is ruled by the anisotropy energy barriers of the bulk IrMn nanograins, namely by the layer thickness. The thermal evolution of the exchange field and of the coercivity in the three samples is coherently explained in the framework of this description of the dynamic magnetic behavior of the IrMn phase.

2.
J Phys Condens Matter ; 24(30): 306004, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22771851

ABSTRACT

Magnetoresistance measurements have been exploited to gain information on the magnetic microstructure of two Ni/NiO nanogranular materials consisting of Ni nanocrystallites (mean size of the order of 10 nm) embedded in a NiO matrix and differing in the amount of metallic Ni, ~33 and ~61 vol%. The overall conductance of both samples is metallic in character, indicating that the Ni content is above the percolation threshold for electric conductivity; the electric resistivity is two orders of magnitude smaller in the sample with higher Ni fraction (10(-5) Ωm against 10(-3) Ωm). An isotropic, spin-dependent magnetoresistance has been measured in the sample with lower Ni content, whereas both isotropic and anisotropic magnetoresistance phenomena coexist in the other material. This study, associated with magnetization loop measurements and the comparison with the exchange bias effect, allows one to conclude that in the sample with lower Ni content neither the physical percolation of the Ni nanocrystallites nor the magnetic percolation (i.e., formation of a homogeneous ferromagnetic network) are achieved; in the other sample physical percolation is reached while magnetic percolation is still absent. In both behaviors, a key role is played by the NiO matrix, which brings about a magnetic nanocrystallite/matrix interface exchange energy term and rules both the direct exchange interaction among Ni nanocrystallites and the magnetotransport properties of these nanogranular materials.


Subject(s)
Electric Conductivity , Magnetic Phenomena , Metal Nanoparticles/chemistry , Nickel/chemistry , Particle Size , Temperature
3.
J Phys Condens Matter ; 22(29): 296010, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-21399327

ABSTRACT

We have studied the magnetic properties of a sample obtained by high-energy mechanical milling from a ferromagnetic FeSiB amorphous ribbon. The milled material mainly consists of a Fe-based amorphous matrix embedding a minor fraction of α-Fe nanocrystallites (∼23%), and magnetization dynamics effects characterize the magnetic behavior. In particular, a magnetic transition occurs at T ∼ 50 K, from a low temperature disordered collective frozen state, similar to a spin-cluster-glass, to a high temperature regime where ferromagnetism predominates. The phenomenon has been ultimately ascribed to the local modification of the interatomic distance distribution in the amorphous matrix, induced by milling.

SELECTION OF CITATIONS
SEARCH DETAIL
...