Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cell ; 83(21): 3801-3817.e8, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37922872

ABSTRACT

Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.


Subject(s)
Histones , RNA Polymerase II , Humans , Histones/genetics , Histones/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Splicing , Transcription, Genetic , Chromatin/genetics , Alternative Splicing
2.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35108495

ABSTRACT

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Subject(s)
Neurodevelopmental Disorders , Peripheral Nervous System Diseases , Animals , Axons/metabolism , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules, Neuronal , Humans , Mice , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscle Spasticity/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Zebrafish/genetics , Zebrafish/metabolism
3.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35182478

ABSTRACT

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Subject(s)
Alternative Splicing , RNA Splicing , Base Composition , Exons/genetics , Introns/genetics
4.
Nat Commun ; 12(1): 4545, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315864

ABSTRACT

In the earliest step of spliceosome assembly, the two splice sites flanking an intron are brought into proximity by U1 snRNP and U2AF along with other proteins. The mechanism that facilitates this intron looping is poorly understood. Using a CRISPR interference-based approach to halt RNA polymerase II transcription in the middle of introns in human cells, we discovered that the nascent 5' splice site base pairs with a U1 snRNA that is tethered to RNA polymerase II during intron synthesis. This association functionally corresponds with splicing outcome, involves bona fide 5' splice sites and cryptic intronic sites, and occurs transcriptome-wide. Overall, our findings reveal that the upstream 5' splice sites remain attached to the transcriptional machinery during intron synthesis and are thus brought into proximity of the 3' splice sites; potentially mediating the rapid splicing of long introns.


Subject(s)
Introns/genetics , RNA Splice Sites/genetics , Transcription, Genetic , Base Pairing/genetics , Base Sequence , Exons/genetics , HEK293 Cells , HeLa Cells , Humans , Microfilament Proteins/genetics , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Transcriptome/genetics
5.
Eur J Hum Genet ; 26(12): 1840-1847, 2018 12.
Article in English | MEDLINE | ID: mdl-30139988

ABSTRACT

For multiple generations, much of the Arab population of Northern Israel has lived in communities with consanguineous marriages and large families. These communities have been particularly cooperative and informative for understanding the genetics of recessive traits. We studied the genetics of hearing loss in this population, evaluating 168 families from 46 different villages. All families were screened for founder variants by Sanger sequencing and 13 families were further evaluated by sequencing all known genes for hearing loss using our targeted gene panel HEar-Seq. Deafness in 34 of 168 families (20%) was explained by founder variants in GJB2, SLC26A4, or OTOF. In 6 of 13 families (46%) evaluated using HEar-Seq, deafness was explained by damaging alleles of SLC26A4, MYO15A, OTOG, LOXHD1, and TBC1D24. In some genes critical to hearing, it is particularly difficult to interpret variants that might affect splicing, because the genes are not expressed in accessible tissue. To address this problem for possible splice-altering variants of MYO15A, we evaluated minigenes transfected into HEK293 cells. Results revealed exon skipping in the message of MYO15A c.9083+6T>A, and intron retention in the message of MYO15A c.8340G>A, in each case leading to a premature stop and consistent with co-segregation of homozygosity for each variant with hearing loss. The profile of genetics of hearing loss in this population reflects the genetic heterogeneity of hearing loss and the usefulness of synthetic technologies to evaluate potentially causal variants in genes not expressed in accessible tissues.


Subject(s)
Arabs/genetics , Hearing Loss/genetics , Mutation Rate , Carrier Proteins/genetics , Connexin 26 , Connexins/genetics , Female , GTPase-Activating Proteins , HEK293 Cells , Hearing Loss/epidemiology , Humans , Israel , Male , Membrane Proteins/genetics , Myosins/genetics , Nerve Tissue Proteins , Pedigree , Sulfate Transporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...