Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 591(1-2): 212-23, 2005 Dec 11.
Article in English | MEDLINE | ID: mdl-16083920

ABSTRACT

Analysis of transcriptome and proteome profiles by microarray technologies provides a formidable, new tool in cancer chemoprevention research. An ideal chemopreventive agent should not excessively alter per se the basal make-up of multigene expression and protein synthesis and should at the same time be able to attenuate alterations induced by risk factors. In order to validate this working hypothesis, we previously performed a series of studies in animal models using the thiol N-acetyl-l-cysteine (NAC) and the nonsteroidal antiinflammatory drug sulindac. We report herein the results of new studies evaluating modulation of DNA adduct levels and expression of 4858 genes in lung and liver of Sprague-Dawley rats, either unexposed or exposed to environmental cigarette smoke (ECS). The tested chemopreventive agents included NAC, oltipraz (OPZ), 5,6-benzoflavone (5,6-BF), phenethyl isothiocyanate (PEITC), and indole 3-carbinol (I3C). Combinations of OPZ with NAC and of PEITC with I3C were also assayed. Excepting OPZ, all treatments inhibited by at least 50% the formation of bulky DNA adducts in the lung of ECS-exposed rats. Hierarchical cluster analysis and principal component analysis allowed us to classify the agents according to their influence on basal gene expression and their ability to attenuate ECS-induced transcriptome alterations. PEITC and I3C were the most effective but the least safe agents. 5,6-BF displayed intermediate patterns. OPZ was poorly effective in lung and considerably altered the basal gene expression in liver. NAC had a medium efficacy and was the safest agent, as also supported by the analysis of 518 proteins in rat lung.


Subject(s)
Anticarcinogenic Agents/pharmacology , Gene Expression Regulation/drug effects , Proteome , Acetylcysteine/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Cluster Analysis , Free Radical Scavengers/pharmacology , Gene Expression Profiling , Male , Mice , Oligonucleotide Array Sequence Analysis , Proteome/analysis , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Smoke , Sulindac/pharmacology , Nicotiana
2.
Mutat Res ; 544(2-3): 441-9, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14644347

ABSTRACT

Birth is characterized by a sudden transition from the maternal-mediated respiration to the autonomous pulmonary respiration. Notwithstanding the importance of the involved functional and metabolic changes, little is known about possible DNA alterations occurring in the lung during the perinatal period. We comparatively evaluated genomic and transcriptional changes in the lung of fetuses and newborn Swiss albino mice, whose dams had either been untreated or treated with oral N-acetyl-L-cysteine (NAC) throughout the pregnancy period. In the less than 24h period elapsing between the end of fetal life and the start of post-natal life, nucleotide alterations occurred in mouse lung, as shown by a significant increase of both bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine levels, detected by 32P post-labeling procedures. The frequency of micronuclei in peripheral blood erythrocytes was not significantly increased after birth. Multigene expression analysis of 746 selected genes, by cDNA arrays, showed that 33 of them (4.4%) were upregulated in the lung of newborn mice, as compared with fetuses. The overexpressed genes were mainly involved in protective mechanism as a response to oxidative changes, alterations of glutathione metabolism, cellular stress, and damage to DNA and proteins. The transplacental treatment with NAC totally prevented birth-related genomic alterations in lung DNA. NAC did not change the basal gene expression in mouse fetal lung, but attenuated the upregulation of most genes involved in oxidative stress, stress response, and DNA repair in the lung of newborn mice. In fact, only 13 genes (1.7%) were overexpressed in newborns from NAC-treated dams. It therefore appears that administration of NAC during pregnancy is beneficial not only to counteract the adverse effects of toxic agents, as supported by previous studies, but also to attenuate birth-related DNA alterations.


Subject(s)
Acetylcysteine/pharmacology , Gene Expression Regulation, Developmental/drug effects , Lung/physiology , Transcription, Genetic/drug effects , Acetylcysteine/administration & dosage , Animals , Animals, Newborn , Disease Models, Animal , Female , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/pharmacology , Genomics , Lung/radiation effects , Maternal-Fetal Exchange , Mice , Pregnancy
3.
Mutat Res ; 523-524: 237-52, 2003.
Article in English | MEDLINE | ID: mdl-12628522

ABSTRACT

The epidemic of lung cancer and the increase of other tumours and chronic degenerative diseases associated with tobacco smoking have represented one of the most dramatic catastrophes of the 20th century. The control of this plague is one of the major challenges of preventive medicine for the next decades. The imperative goal is to refrain from smoking. However, chemoprevention by dietary and/or pharmacological agents provides a complementary strategy, which can be targeted not only to current smokers but also to former smokers and passive smokers. This article summarises the results of studies performed in our laboratories during the last 10 years, and provides new data generated in vitro, in experimental animals and in humans. We compared the ability of 63 putative chemopreventive agents to inhibit the bacterial mutagenicity of mainstream cigarette smoke. Modulation by ethanol and the mechanisms involved were also investigated both in vitro and in vivo. Several studies evaluated the effects of dietary chemopreventive agents towards smoke-related intermediate biomarkers in various cells, tissues and organs of rodents. The investigated end-points included metabolic parameters, adducts to haemoglobin, bulky adducts to nuclear DNA, oxidative DNA damage, adducts to mitochondrial DNA, apoptosis, cytogenetic damage in alveolar macrophages, bone marrow and peripheral blood erytrocytes, proliferation markers, and histopathological alterations. The agents tested in vivo included N-acetyl-L-cysteine, 1,2-dithiole-3-thione, oltipraz, phenethyl isothiocyanate, 5,6-benzoflavone, and sulindac. We started applying multigene expression analysis to chemoprevention research, and postulated that an optimal agent should not excessively alter per se the physiological background of gene expression but should be able to attenuate the alterations produced by cigarette smoke or other carcinogens. We are working to develop an animal model for the induction of lung tumours following exposure to cigarette smoke. The most encouraging results were so far obtained in models using A/J mice and Swiss albino mice. The same smoke-related biomarkers used in animal studies can conveniently be applied to human chemoprevention studies. We participated in trials evaluating the effects of N-acetyl-L-cysteine and oltipraz in smokers from Italy, The Netherlands, and the People's Republic of China. We are trying to develop a pharmacogenomic approach, e.g. based on genetic metabolic polymorphisms, aimed at predicting not only the risk of developing cancer but also the individual responsiveness to chemopreventive agents.


Subject(s)
Carcinogens/analysis , Mutagens/analysis , Smoke/adverse effects , Smoking , Animals , Gene Expression Regulation , Humans , Lung Neoplasms/epidemiology , Models, Animal
4.
Carcinogenesis ; 23(4): 587-93, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11960910

ABSTRACT

Several studies have shown that hexavalent chromium [Cr(VI)] induces apoptosis in a variety of in vitro test systems. We instilled intra-tracheally either saline or sodium dichromate (0.25 mg/kg body weight), for three consecutive days, to Sprague-Dawley rats. TUNEL analyses showed a marked increase of the apoptotic index in both bronchial epithelium and lung parenchyma of Cr(VI)-treated rats, but no effect was detected in their liver. In parallel, the expression of 13 out of 18 apoptosis-related genes, evaluated by cDNA array analysis, was significantly enhanced in rat lung. The overexpressed genes included c-Jun N-terminal kinases 1, 2 and 3, bcl-x, bcl-2-associated death promoter and bcl-2-related ovarian killer protein, caspases 1, 3 and 6, DNase I precursor, DNA topoisomerases I and II alpha, and poly(ADP-ribose) polymerase. The enhancement of p53 expression in the lung was borderline to statistical significance. Expressions of bcl-2, bax-alpha, mdm2 and DNA topoisomerase IIB were not enhanced to a significant extent in lung. No induction of gene expression was observed in rat liver. RT-PCR analyses confirmed that Cr(VI) enhances the expression of c-Jun N-terminal kinase 1, caspase 6, and DNase I precursor but not that of bcl-2 in lung, while none of these genes was overexpressed in the liver of Cr(VI)-treated rats. The lack of stimulation of apoptosis in the liver parallels the failure of Cr(VI) to produce genotoxic damage, as we previously observed under identical experimental conditions. These negative findings may be ascribed to reduction of Cr(VI) to Cr(III) when traveling from the respiratory tract to the liver. On the other hand, induction of apoptosis in the respiratory tract parallels the occurrence of genotoxic effects and oxidative DNA damage produced by Cr(VI) in the same tissue. As previously shown in another laboratory, Cr(VI) did not induce lung tumors after 30 months of administration of the same daily dose. Therefore, apoptosis is likely to provide a protective mechanism at a post-genotoxic stage of Cr(VI) carcinogenesis.


Subject(s)
Apoptosis , Chromium/administration & dosage , Chromium/pharmacology , Liver/pathology , Lung/pathology , Nuclear Proteins , Proto-Oncogene Proteins c-bcl-2 , Animals , Carcinogens, Environmental , Caspase 6 , Caspases/biosynthesis , Chromates/pharmacology , DNA Topoisomerases, Type II/biosynthesis , DNA, Complementary/metabolism , DNA-Binding Proteins , Deoxyribonuclease I/biosynthesis , Dose-Response Relationship, Drug , In Situ Nick-End Labeling , JNK Mitogen-Activated Protein Kinases , Liver/drug effects , Lung/drug effects , Male , Mitogen-Activated Protein Kinases/biosynthesis , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins c-mdm2 , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Trachea/metabolism , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...