Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2567: 233-249, 2023.
Article in English | MEDLINE | ID: mdl-36255705

ABSTRACT

The zebrafish as a model organism is well known for its versatile genetics, rapid development, and straightforward live imaging. It is an excellent model to study hematopoiesis because of its highly conserved ontogeny and gene regulatory networks. Recently developed highly specific transgenic reporter lines have allowed direct imaging and tracking of hematopoietic stem and progenitor cells (HSPCs) in live zebrafish. These reporter lines can also be used for fluorescence-activated cell sorting (FACS) of HSPCs. Similar to mammalian models, HSPCs can be transplanted to reconstitute the entire hematopoietic system of zebrafish recipients. However, the zebrafish provides unique advantages to study HSPC biology, such as transplants into embryos and high-throughput chemical screening. This chapter will outline the methods needed to identify, isolate, and transplant HSPCs in zebrafish.


Subject(s)
Hematopoietic Stem Cell Transplantation , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Zebrafish Proteins/metabolism , Animals, Genetically Modified , Mammals/metabolism
2.
Elife ; 112022 08 09.
Article in English | MEDLINE | ID: mdl-35943143

ABSTRACT

The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here, we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.


Subject(s)
Stem Cell Niche , Zebrafish , Animals , Hematopoietic Stem Cells/metabolism , Microscopy, Electron
3.
Development ; 149(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34919128

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.


Subject(s)
Aorta/cytology , Cell Differentiation , Hematopoietic Stem Cells/metabolism , Vascular Endothelial Growth Factor C/metabolism , Zebrafish Proteins/metabolism , Animals , Aorta/embryology , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/embryology , Hematopoietic Stem Cells/cytology , Loss of Function Mutation , Myeloid Cells/cytology , Myeloid Cells/metabolism , Vascular Endothelial Growth Factor C/genetics , Zebrafish , Zebrafish Proteins/genetics
4.
Blood ; 138(21): 2012-2014, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34821941

Subject(s)
Dopamine , Reward , Stem Cells
6.
Blood ; 137(6): 775-787, 2021 02 11.
Article in English | MEDLINE | ID: mdl-32881992

ABSTRACT

Hematopoietic and nervous systems are linked via innervation of bone marrow (BM) niche cells. Hematopoietic stem/progenitor cells (HSPCs) express neurotransmitter receptors, such as the γ-aminobutyric acid (GABA) type B receptor subunit 1 (GABBR1), suggesting that HSPCs could be directly regulated by neurotransmitters like GABA that directly bind to GABBR1. We performed imaging mass spectrometry and found that the endogenous GABA molecule is regionally localized and concentrated near the endosteum of the BM niche. To better understand the role of GABBR1 in regulating HSPCs, we generated a constitutive Gabbr1-knockout mouse model. Analysis revealed that HSPC numbers were significantly reduced in the BM compared with wild-type littermates. Moreover, Gabbr1-null hematopoietic stem cells had diminished capacity to reconstitute irradiated recipients in a competitive transplantation model. Gabbr1-null HSPCs were less proliferative under steady-state conditions and upon stress. Colony-forming unit assays demonstrated that almost all Gabbr1-null HSPCs were in a slow or noncycling state. In vitro differentiation of Gabbr1-null HSPCs in cocultures produced fewer overall cell numbers with significant defects in differentiation and expansion of the B-cell lineage. To determine whether a GABBR1 agonist could stimulate human umbilical cord blood (UCB) HSPCs, we performed brief ex vivo treatment prior to transplant into immunodeficient mice, with significant increases in long-term engraftment of HSPCs compared with GABBR1 antagonist or vehicle treatments. Our results indicate a direct role for GABBR1 in HSPC proliferation, and identify a potential target to improve HSPC engraftment in clinical transplantation.


Subject(s)
Hematopoietic Stem Cells/cytology , Receptors, GABA-B/physiology , Animals , B-Lymphocytes/pathology , Baclofen/analogs & derivatives , Baclofen/pharmacology , Bone Marrow/innervation , Bone Marrow/metabolism , Bone Marrow Transplantation , Cell Division , Cell Lineage , Female , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Human Umbilical Vein Endothelial Cells/transplantation , Humans , Lymphopenia/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Radiation Chimera , Receptors, GABA-B/deficiency , Receptors, GABA-B/genetics , Stem Cell Niche
9.
Trends Cell Biol ; 28(12): 987-998, 2018 12.
Article in English | MEDLINE | ID: mdl-29857963

ABSTRACT

The hematopoietic stem cell (HSC) niche supports steady-state hematopoiesis and responds to changing needs during stress and disease. The nervous system is an important regulator of the niche, and its influence is established early in development when stem cells are specified. Most research has focused on direct innervation of the niche, however recent findings show there are different modes of neural control, including globally by the central nervous system (CNS) and hormone release, locally by neural crest-derived mesenchymal stem cells, and intrinsically by hematopoietic cells that express neural receptors and neurotransmitters. Dysregulation between neural and hematopoietic systems can contribute to disease, however new therapeutic opportunities may be found among neuroregulator drugs repurposed to support hematopoiesis.


Subject(s)
Hematopoietic Stem Cells/metabolism , Stem Cell Niche , Animals , Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Humans , Neurotransmitter Agents/pharmacology , Stem Cell Niche/drug effects
10.
Cell Stem Cell ; 22(1): 5-7, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29304342

ABSTRACT

The bone marrow (BM) niche is a complex microenvironment that supports healthy hematopoietic stem cells (HSCs) throughout life. In this issue of Cell Stem Cell, Duarte et al. (2018) reveal the spatio-temporal progress of leukemic cells as they invade and occupy the niche, ultimately outcompeting native HSCs.


Subject(s)
Bone Marrow , Stem Cell Niche , Hematopoietic Stem Cells , Humans , Leukemia , Mastication
11.
J Exp Med ; 214(4): 1011-1027, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28351983

ABSTRACT

The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Recent advances marking fluorescent HSPCs have allowed exquisite visualization of HSPCs in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Here, we show that the chemokine cxcl8 and its receptor, cxcr1, are expressed by zebrafish endothelial cells, and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization. Single-cell tracking experiments demonstrated that this is a result of increases in HSPC-endothelial cell "cuddling," HSPC residency time within the CHT, and HSPC mitotic rate. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression. Finally, using parabiotic zebrafish, we show that cxcr1 acts HSPC nonautonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Receptors, Interleukin-8A/physiology , Animals , Cells, Cultured , Cellular Microenvironment , Hematopoietic Stem Cells/physiology , Interleukin-8/physiology , Signal Transduction/physiology , Zebrafish
12.
Blood ; 126(26): 2811-20, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26385351

ABSTRACT

Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Cell Differentiation/physiology , Hemangioblasts/cytology , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Animals , Cell Lineage/physiology , Electroporation , Embryo, Mammalian , Embryo, Nonmammalian , Flow Cytometry , Immunohistochemistry , Mesonephros/embryology , Mice , Mice, Knockout , Microscopy, Confocal , Zebrafish
13.
Nature ; 523(7561): 468-71, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26201599

ABSTRACT

Haematopoietic stem and progenitor cell (HSPC) transplant is a widely used treatment for life-threatening conditions such as leukaemia; however, the molecular mechanisms regulating HSPC engraftment of the recipient niche remain incompletely understood. Here we develop a competitive HSPC transplant method in adult zebrafish, using in vivo imaging as a non-invasive readout. We use this system to conduct a chemical screen, and identify epoxyeicosatrienoic acids (EETs) as a family of lipids that enhance HSPC engraftment. The pro-haematopoietic effects of EETs were conserved in the developing zebrafish embryo, where 11,12-EET promoted HSPC specification by activating a unique activator protein 1 (AP-1) and runx1 transcription program autonomous to the haemogenic endothelium. This effect required the activation of the phosphatidylinositol-3-OH kinase (PI(3)K) pathway, specifically PI(3)Kγ. In adult HSPCs, 11,12-EET induced transcriptional programs, including AP-1 activation, which modulate several cellular processes, such as migration, to promote engraftment. Furthermore, we demonstrate that the EET effects on enhancing HSPC homing and engraftment are conserved in mammals. Our study establishes a new method to explore the molecular mechanisms of HSPC engraftment, and discovers a previously unrecognized, evolutionarily conserved pathway regulating multiple haematopoietic generation and regeneration processes. EETs may have clinical application in marrow or cord blood transplantation.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Zebrafish/embryology , 8,11,14-Eicosatrienoic Acid/metabolism , Animals , Cell Line , Cell Movement , Core Binding Factor Alpha 2 Subunit/metabolism , Female , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Kidney/cytology , Male , Mice , Phosphatidylinositol 3-Kinases , Transcription Factor AP-1/metabolism , Transcription, Genetic
14.
J Exp Med ; 212(5): 649-63, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25870200

ABSTRACT

Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1(+)/cmyb(+) HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl(+) hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP-protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates.


Subject(s)
Adenosine/metabolism , Aorta/metabolism , Endothelium, Vascular/metabolism , Hematopoietic Stem Cells/metabolism , Receptor, Adenosine A2B/metabolism , Adenosine/genetics , Animals , Aorta/cytology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endothelium, Vascular/cytology , Hematopoietic Stem Cells/cytology , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Mice , Mice, Knockout , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Receptor, Adenosine A2B/genetics
15.
Cell ; 160(1-2): 241-52, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25594182

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) can reconstitute and sustain the entire blood system. We generated a highly specific transgenic reporter of HSPCs in zebrafish. This allowed us to perform high-resolution live imaging on endogenous HSPCs not currently possible in mammalian bone marrow. Using this system, we have uncovered distinct interactions between single HSPCs and their niche. When an HSPC arrives in the perivascular niche, a group of endothelial cells remodel to form a surrounding pocket. This structure appears conserved in mouse fetal liver. Correlative light and electron microscopy revealed that endothelial cells surround a single HSPC attached to a single mesenchymal stromal cell. Live imaging showed that mesenchymal stromal cells anchor HSPCs and orient their divisions. A chemical genetic screen found that the compound lycorine promotes HSPC-niche interactions during development and ultimately expands the stem cell pool into adulthood. Our studies provide evidence for dynamic niche interactions upon stem cell colonization. PAPERFLICK:


Subject(s)
Endothelium/physiology , Hematopoietic Stem Cells/cytology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Cell Division , Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/physiology , Endothelium/cytology , Hematopoietic Stem Cells/physiology , Mesoderm/cytology , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Stem Cell Niche , Stromal Cells/cytology , Stromal Cells/metabolism , Zebrafish/physiology
16.
Dev Biol ; 373(2): 431-41, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-22960038

ABSTRACT

Growth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1b, regulates HSC, megakaryocyte and erythroid development. In zebrafish, gfi1aa is essential for primitive hematopoiesis; however, little is known about the role of gfi1aa in definitive hematopoiesis or about additional gfi factors in zebrafish. Here, we report the isolation and characterization of an additional hematopoietic gfi factor, gfi1b. We show that gfi1aa and gfi1b are expressed in the primitive and definitive sites of hematopoiesis in zebrafish. Our functional analyses demonstrate that gfi1aa and gfi1b have distinct roles in regulating primitive and definitive hematopoietic progenitors, respectively. Loss of gfi1aa silences markers of early primitive progenitors, scl and gata1. Conversely, loss of gfi1b silences runx-1, c-myb, ikaros and cd41, indicating that gfi1b is required for definitive hematopoiesis. We determine the epistatic relationships between the gfi factors and key hematopoietic transcription factors, demonstrating that gfi1aa and gfi1b join lmo2, scl, runx-1 and c-myb as critical regulators of teleost HSPC. Our studies establish a comparative paradigm for the regulation of hematopoietic lineages by gfi transcription factors.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Conserved Sequence/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Embryo, Nonmammalian/metabolism , Epistasis, Genetic , Erythropoiesis/genetics , Evolution, Molecular , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hematopoietic System/embryology , Hematopoietic System/metabolism , Models, Biological , Molecular Sequence Data , Zebrafish/embryology , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
17.
Wiley Interdiscip Rev Dev Biol ; 1(3): 459-68, 2012.
Article in English | MEDLINE | ID: mdl-23801494

ABSTRACT

Phenotype-driven chemical genetic screens in zebrafish have become a proven approach for both dissection of developmental mechanisms and discovery of potential therapeutics. A library of small molecules can be arrayed into multiwell plates containing zebrafish embryos. The embryo becomes a whole organism in vivo bioassay that can produce a phenotype upon treatment. Screens have been performed that are based simply on the morphology of the embryo. Other screens have scored complex phenotypes using whole mount in situ hybridization, fluorescent transgenic reporters, and even tracking of embryo movement. The availability of many well-characterized zebrafish mutants has also enabled the discovery of chemical suppressors of genetic phenotypes. Importantly, the application of chemical libraries that already contain FDA-approved drugs has allowed the rapid translation of hits from zebrafish chemical screens to clinical trials.


Subject(s)
Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Genetic Testing , Small Molecule Libraries/pharmacology , Zebrafish/genetics , Animals , Phenotype , Zebrafish/embryology
18.
Dis Model Mech ; 5(1): 73-82, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22028328

ABSTRACT

Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of ß-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.


Subject(s)
Integrases/metabolism , Intervertebral Disc/embryology , Notochord/cytology , Animals , Embryo, Mammalian/cytology , Intervertebral Disc/cytology , Intervertebral Disc/metabolism , Keratin-8/metabolism , Mice , Notochord/metabolism , Osteogenesis , Staining and Labeling , Time Factors , beta-Galactosidase/metabolism
19.
Dev Biol ; 360(2): 415-25, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22008794

ABSTRACT

The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord.


Subject(s)
Chromatin/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Notochord/embryology , Animals , Chromatin Immunoprecipitation , Enhancer Elements, Genetic , Hepatocyte Nuclear Factor 3-beta/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Mutation , Notochord/metabolism , Protein Array Analysis , Zebrafish
20.
Development ; 138(1): 169-77, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21138979

ABSTRACT

Molecular genetics approaches in zebrafish research are hampered by the lack of a ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the zebrafish ubiquitin (ubi) promoter, which drives constitutive transgene expression during all developmental stages and analyzed adult organs. Notably, ubi expresses in all blood cell lineages, and we demonstrate the application of ubi-driven fluorophore transgenics in hematopoietic transplantation experiments to assess true multilineage potential of engrafted cells. We further generated transgenic zebrafish that express ubiquitous 4-hydroxytamoxifen-controlled Cre recombinase activity from a ubi:cre(ERt2) transgene, as well as ubi:loxP-EGFP-loxP-mCherry (ubi:Switch) transgenics and show their use as a constitutive fluorescent lineage tracing reagent. The ubi promoter and the transgenic lines presented here thus provide a broad resource and important advancement for transgenic applications in zebrafish.


Subject(s)
Integrases/metabolism , Promoter Regions, Genetic/genetics , Transgenes/genetics , Ubiquitin/genetics , Zebrafish/genetics , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Enzyme Activation/drug effects , Integrases/genetics , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...